Master’s studies

Syllabus for Atmospheric Applications

Atmosfäriska tillämpningar


  • 15 credits
  • Course code: 1ME407
  • Education cycle: Second cycle
  • Main field(s) of study and in-depth level: Physics A1F, Earth Science A1F
  • Grading system: Fail (U), 3, 4, 5
  • Established: 2008-03-13
  • Established by: The Faculty Board of Science and Technology
  • Revised: 2017-05-04
  • Revised by: The Faculty Board of Science and Technology
  • Applies from: week 30, 2017
  • Entry requirements: 120 credits and Turbulence and Micrometeorology, 15 credits.
  • Responsible department: Department of Earth Sciences

Learning outcomes

The aim of the course is to use the student knowledge in meteorology on applications other then classical weather and climate.

A student that has successfully passed the course should be able to:

  • describe the techniques used to model and quantify air pollutions and noise in the atmospheric boundary layer.
  • describe the techniques used to remove pollutants .
  • apply methods used to calculate wind resources, which are used in planning new wind energy parks.
  • describe basic theory of agricultural meteorology and which forecasting methods are applicable within different agricultural contexts
  • describe the effect of the climate scenarios, how they are constructed and their uncertanties
  • describe and apply methods to calculate mean and extreme climate of wind, temperature, and precipitation and describe how they can be used in planning of different types of constructions.


Air pollutants from anthropogenic and natural sources. Atmospheric transport, diffusion, chemical transformation and deposition. Techniques used to remove pollutants. Effects of pollutants with respect to human health, overfertilization, acid rain and ozone depletion. Calculations of air pollutant concentration using a numerical model. Basic in acoustics. Meteorological effects on sound propagation; refraction, absorption, scattering and ground attenuation. Result from experiments and model calculations. Basic agricultural meteorology, degree days, conditions for the most common crops, energybalance for plants, probablity forecasts. . Calculations of the energy content of the wind, variations in space and time. Corrections of time series using normal year index. Basic knowledge about wind power techniques, Betz law. Calculations of effect curves. Construction of climate scenarios, their effects and uncertanties.  Methods used to calculate the mean and extreme values of wind, temperature, and precipitation and knowledge about how they can be used by the society when planning new constructions. Dimensioning of dams, problems with icing, conceptual understaning of load calculations from variances and spectra.


Lectures, practical assignments, hand-in assignments, calculation exercises, seminars, study visit and oral presentations


Written examination (7.5 credits). To pass requires approved practical assignments and approved mandatory assignments (7.5 credits).

Reading list

Reading list

Applies from: week 30, 2017

  • Sverige inför klimatförändringarna : hot och möjligheter

    Stockholm: Fritze, 2007


    Find in the library

  • Sweden facing climate change :b threats and opportunities : final report from the Swedish Commission on Climate and Vulnerability

    Stockholm: Fritze, 2007

    Find in the library

  • Vallero, Daniel Fundamentals of Air Pollution

    5. ed.: Waltham: Academic Press, 2014

    Find in the library

Larsson C: Basic Acoustics in Outdoor Sound Propagation. Institutionen för geovetenskaper Plus additional material handed out during the course.