Preprints Physics

A Refined N=2 Chiral Multiplet on Twisted AdS_2 x S^1
Authors: Antonio Pittelli
Preprint number: UUITP63/18
N=2 chiral multiplet on twisted AdS_2×S^1. The chiral multiplet is coupled to a background vector multiplet encoding a real mass deformation. We consider an AdS_2×S^1 metric containing two parameters: one is the S^1 radius, while the other gives a fugacity q for the angular momentum on AdS_2. The computation is carried out by means of supersymmetric localization, which provides a finite answer written in terms of qPochammer symbols and multiple Zeta functions. Especially, the partition function Z_chi reproduces threedimensional holomorphic blocks if we require that all the fields are strictly normalisable. Finally, we observe that Z_chi loses its dependence on the S^1 radius once the background vector multiplet is turned off, becoming a pure function of the fugacity q.

NonAbelian gauged supergravities as double copies
Authors: Marco Chiodaroli, Murat Gunaydin, Henrik Johansson and Radu Roiban
Preprint number: UUITP62/18
Scattering amplitudes have the potential to provide new insights to the study of supergravity theories with gauged Rsymmetry and Minkowski vacua. Such gaugings break supersymmetry spontaneously, either partly or completely. In this paper, we develop a framework for doublecopy constructions of Abelian and nonAbelian gaugings of N = 8 supergravity with these properties. They are generally obtained as the double copy of a spontaneouslybroken (possibly supersymmetric) gauge theory and a theory with explicitlybroken supersymmetry. We first identify purelyadjoint deformations of N = 4 superYangMills theory that preserve the duality between color and kinematics. A combination of Higgsing and orbifolding yields the needed dualitysatisfying gaugetheory factors with multiple matter representations. We present three explicit examples. Two are CremmerScherkSchwarz gaugings with unbroken N = 6, 4 supersymmetry and U(1) gauge group. The third has unbroken N = 4 supersymmetry and SU(2)×U(1) gauge group. We also discuss examples in which the doublecopy method gives theories with explicitlybroken supersymmetry.

The full spectrum of AdS5/CFT4 II: Weak coupling expansion via the quantum spectral curve
Authors: Christian Marboe, Dmytro Volin
Preprint number: UUITP61/18
We continue the effort to optimise and generalise the solution of the spectral problem of AdS5/CFT4 in the planar limit via integrability. We present a simple strategy to solve the quantum spectral curve perturbatively for general states by focusing on the Pμsystem. A Mathematica notebook with an implementation of this algorithm is provided, as well as an extensive database with a userfriendly interface containing more than 8.000 solutions of the QSC. When investigating the solution space, we observe a curious phenomenon: existence of solutions for which the Qsystem degenerates in the limit g>0. These degeneracies are lifted at higher orders in perturbation theory. The degenerating solutions have auxiliary Bethe roots merging with branch points at weak coupling.

Evolution for Khovanov polynomials for figureeightlike family of knots
Authors: Petr DuninBarkowski, Aleksandr Popolitov, Svetlana Popolitova
Preprint number: UUITP60/18
We look at how evolution method deforms, when one considers Khovanov polynomials instead of Jones polynomials. We do this for the figureeightlike knots  a twoparametric family of knots which "grows" from the figureeight knot and contains both twostrand torus knots and twist knots. We prove that parameter space splits into four chambers, each with its own evolution, and two isolated points. Remarkably, the evolution in the Khovanov case features an extra eigenvalue, which drops out in the Jones (t > 1) limit.

Twisting with a Flip (the Art of Pestunization)
Authors: Guido Festuccia, Jian Qiu, Jacob Winding, Maxim Zabzine
Preprint number: UUITP59/18
We construct N=2 supersymmetric YangMills theory on 4D manifold with Killing vector field with the isolated fixed points. It turns out that for every fixed point one can allocate either instanton or antiinstanton contributions in the partition function and this is compatible with the supersymmetry. The equivariant DonaldsonWitten theory is a special case of our construction. We present the unified treatment of the Pestun's calculation on S^4 and the equivariant DonaldsonWitten theory by generalizing the notion of selfduality on the manifolds with a vector field. We conjecture the full partition function for N=2 theory on any 4D simply connected manifold with a Killing vector.

String amplitudes from QFT amplitudes and vice versa
Author: Song He, Fei Teng and Yong Zhang
Preprint number: UUITP58/18
We present an integrationbypart reduction of any massless treelevel string correlator to an equivalence class of ``logarithmic functions'', which can be used to define a fieldtheory amplitude via a CachazoHeYuan (CHY) formula. The string amplitude is then shown to be the double copy of the field theory one and a special disk/sphere integral. The construction is generic as it applies to any correlator that is a rational function of correct SL$(2)$ weight. By applying the reduction to open bosonic/heterotic strings, we get a closedform CHY integrand for the $DF^2+\text{YM}+\phi^3$ theory.

Oneloop Amplitudes for N = 2 Homogeneous Supergravities
Authors: Maor BenShahar and Marco Chiodaroli
Preprint number: UUITP57/18
In this paper, we compute oneloop matter amplitudes in homogeneous MaxwellEinstein supergravities with N = 2 supersymmetry in four dimensions using a doublecopy construction which was established in arXiv:1512.09130. We start from a presentation of amplitudes in a superYangMills theory with matter hypermultiplet which obeys manifestly the duality between color and kinematics. Taking advantage of the fact that amplitudes with external hypermultiplets have kinematical numerators which do not present any explicit dependence on the loop momentum, we are able to find a relation between the oneloop divergence of the supergravity amplitudes and the beta function of the nonsupersymmetric gauge theory entering the doublecopy construction. We find that two distinct counterterms are generated at one loop. The divergence corresponding to the first is nonzero for all homogeneous supergravities. The divergence associated to the second vanishes only in the case of the four Magical supergravities.

Quantum Corrections to Central Charges and Supersymmetric Casimir Energy in AdS3/CFT2
Authors: Arash Arabi Ardehali, Finn Larsen, James T. Liu, Phillip Szepietowski
Preprint number: UUITP56/18
We study the Casimir energy of bulk fields in AdS3 and its relation to subleading terms in the central charge of the dual CFT2. Computing both sides of the standard CFT2 relation E=−c/12 independently we show that this relation is not necessarily satisfied at the level of individual bulk supergravity states, but in theories with sufficient supersymmetry it is restored at the level of bulk supermultiplets. Assuming at least (0,2) supersymmetry, we improve the situation by relating quantum corrections to the central charge and the supersymmetric Casimir energy which in turn is related to an index. These relations adapt recent progress on the AdS5/CFT4 correspondence to AdS3/CFT2 holography. We test our formula successfully in several examples, including the (0,4) MSW theory describing classes of 4D black holes and the large (4,4) theory that is interesting for higher spin holography. We also make predictions for the subleading central charges in several recently proposed (2,2) dualities where the CFT2 is not yet wellunderstood.

AdS2 solutions and their massive IIA origin
Authors: Giuseppe Dibitetto and Nicolò Petri
Preprint number: UUITP55/18
We consider warped AdS2 x M4 backgrounds within F(4) gauged supergravity in six dimensions. In particular, we are able to find supersymmetric solutions of the aforementioned type characterized by AdS6 asymptotics and an M4 given by a threesphere warped over a segment. Subsequently, we provide the 10D uplift of the solutions to massive type IIA supergravity, where the geometry is AdS2 x S3 x S3 warped over a strip. Finally we construct the brane intersection underlying one of these supergravity backgrounds. The explicit setup involves D0  F1  D4 bound state intersecting a D4  D8 system.

Twoloop N = 2 SQCD amplitudes with external matter from iterated cut
Authors: Gregor Kälin, Gustav Mogull, Alexander Ochirov
Preprint number: UUITP54/18
We develop an iterative method for constructing fourdimensional generalized unitarity cuts in N = 2 supersymmetric YangMills (SYM) theory coupled to fundamental matter hypermultiplets (N = 2 SQCD). For iterated twoparticle cuts, specifically those involving only fourpoint amplitudes, this implies simple diagrammatic rules for assembling the cuts to any loop order, analogous to the rung rule in N = 4 SYM. By identifying physical poles, the construction simplifies the task of extracting complete integrands. In combination with the duality between color and kinematics we construct all fourpoint massless MHVsector scattering amplitudes up to two loops in N = 2 SQCD, including those with matter on external legs. Our results reveal chiral infraredfinite integrands closely related to those found using looplevel BCFW recursion. The integrands are valid in D ≤ 6 dimensions with external states in a fourdimensional subspace; the upper bound is dictated by our use of sixdimensional chiral N = (1, 0) SYM as a means of dimensionally regulating loop integrals.

Physics and geometry of knotsquivers correspondence
Authors: Tobias Ekholm, Piotr Kucharski, Pietro Longhi
Preprint number: UUITP53/18
The recently conjectured knotsquivers correspondence relates gauge theoretic invariants of a knot K in the 3sphere to representation theory of a quiver QK associated to the knot. In this paper we provide geometric and physical contexts for this conjecture within the framework of the large N duality of Ooguri and Vafa, that relates knot invariants to counts of holomorphic curves with boundary on LK, the conormal Lagrangian of the knot in the resolved conifold, and corresponding Mtheory considerations. From the physics side, we show that the quiver encodes a 3d N=2 theory T[QK] whose low energy dynamics arises on the worldvolume of an M5 brane wrapping the knot conormal and we match the (Ktheoretic) vortex partition function of this theory with the motivic generating series of QK. From the geometry side, we argue that the spectrum of (generalized) holomorphic curves on LK is generated by a finite set of basic disks. These disks correspond to the nodes of the quiver QK and the linking of their boundaries to the quiver arrows. We extend this basic dictionary further and propose a detailed map between quiver data and topological and geometric properties of the basic disks that again leads to matching partition functions. We also study generalizations of Apolynomials associated to QK and (doubly) refined version of LMOV invariants.

Gauge theories on spheres with 16 supercharges and nonconstant couplings
Authors: Joseph A. Minahan and Usman Naseer
Preprint number: UUITP52/18
We construct a class of theories with 16 supersymmetries on spheres of dimension nine and less. The gauge coupling and mass terms for the scalar fields depend on the polar angle away from the north pole and are essentially conformal compensating factors derived from the flat space theory. Assuming finite coupling on the north pole, this leads to zero coupling at the south pole for d > 4 and infinite coupling at the south pole for d < 4. The underlying supersymmetry algebra of these theories is shown to be isomorphic to the Poincar ́e superalgebra in ddimensions. We also give a localization procedure which leads to nontrivial results for d = 2.

TDuality in (2,1) Superspace
Preprint number: UUITP51/18
Authors: M. AbouZeid, C. M. Hull, U. Lindström and M. Roček
Abstract: We find the Tduality transformation rules for 2dimensional (2,1) supersymmet ric sigmamodels in (2,1) superspace. Our results clarify certain aspects of the (2,1) sigma model geometry relevant to the discussion of Tduality. The complexified duality transformations we find are equivalent to the usual Buscher duality trans formations (including an important refinement) together with diffeomorphisms. We use the gauging of sigmamodels in (2,1) superspace, which we review and develop, finding a manifestly real and geometric expression for the gauged action. We discuss the obstructions to gauging (2,1) sigmamodels, and find that the obstructions to (2,1) Tduality are considerably weaker.

A new light on the darkest corner of the landscape
Preprint number: UUITP50/18
Authors: Johan Blåbäck, Ulf Danielsson and Giuseppe Dibitetto
Abstract: Motivated by the recently proposed bounds on the slowroll parameters for
scalar potentials arising from string/Mtheory compactifications, a.k.a. the
Refined de Sitter Swampland conjecture, we explore the sharpness of such
constraints within 4D supergravities coming from compactifications of massive
type IIA string theory on T 6 /(Z 2 × Z 2 ). With the aid of a numerical technique,
known as differential evolution, we are able to find a de Sitter extremum which
is fully metastable up to one single flat direction. This solution is supported by
spacetime filling sources such as O6 planes and KK monopoles. Our example
violates the bound imposed by this conjecture. 
Separated variables and wave functions for rational gl(N) spin chains in the companion twist frame
Authors: Paul Ryan and Dmytro Volin
Preprint number: UUITP49/18
We propose a basis for rational gl(N) spin chains in an arbitrary rectangular representation (S^A) that factorises the Bethe vectors into products of Slater determinants in Baxter Qfunctions. This basis is constructed by repeated action of fused transfer matrices on a suitable reference state. We prove that it diagonalises the socalled Boperator, hence the operatorial roots of the latter are the separated variables. The spectrum of the separated variables is also explicitly computed and it turns out to be labelled by GelfandTsetlin patterns. Our approach utilises a special choice of the spin chain twist which substantially simplifies derivations.

Dyson equations for correlators of Wilson loops
Authors: Diego Correa, Pablo Pisani, Alan Rios Fukelman and Konstantin Zarembo
Preprint Number: UUITP48/18
By considering a Gaussian truncation of N=4 super YangMills, we derive a set of Dyson equations that account for the ladder diagram contribution to connected correlators of circular Wilson loops. We consider different numbers of loops, with different relative orientations. We show that the Dyson equations admit a spectral representation in terms of eigenfunctions of a Schrödinger problem, whose classical limit describes the strong coupling limit of the ladder resummation. We also verify that in supersymmetric cases the exact solution to the Dyson equations reproduces known matrix model results.

Boundary and Defect CFT: Open Problems and Applications
Authors: Natan Andrei, Agnese Bissi, Matthew Buican, John Cardy, Patrick Dorey, Nadav Drukker, Johanna Erdmenger, Daniel Friedan, Dmitri Fursaev, Anatoly Konechny, Charlotte Kristjansen, Isao Makabe, Yu Nakayama, Andy O'Bannon, Robert Parini, Brandon Robinson, Shinsei Ryu, Cornelius SchmidtColinet, Volker Schomerus, Christoph Schweigert, Gerard Watts
Preprint number: UUITP47/18
Proceedings of the workshop "Boundary and Defect Conformal Field Theory: Open Problems and Applications," Chicheley Hall, Buckinghamshire, UK, 78 Sept. 2017.

The Generalised Complex Geometry of SKT Spaces and (p,q) Supersymmetric Sigma Models
Authors: Chris Hull and Ulf Lindström
Preprint number: UUITP46/18
We provide a generalised complex geometry formulation of the target space geometry of the (p,q) supersymmetric sigma model. This includes generalized Kähler geometry for (2,2), generalized hyperkähler geometry for (4,2), strong Kähler with torsion geometry for (2,1) and strong hyperkähler with torsion geometry for (4,1). Our formulation involves a chiral version of generalised complex structure.

Solving qVirasoro constraints
Authors: Rebecca Lodin, Aleksandr Popolitov, Shamil Shakirov, Maxim Zabzine
Preprint number: UUITP44/18
We show how qVirasoro constraints can be derived for a large class of (q,t)deformed eigenvalue matrix models by an elementary trick of inserting certain qdifference operators under the integral, in complete analogy with fullderivative insertions for βensembles. From free field point of view the models considered have zero momentum of the highest weight, which leads to an extra constraint T_{−1}Z = 0. We then show how to solve these qVirasoro constraints recursively and comment on the possible applications for gauge theories, for instance calculation of (supersymmetric) Wilson loop averages in gauge theories on D^2 × S^1 and S^3.

Counting String Theory Standard Models
Authors: Andrei Constantin, YangHui He, Andre Lukas
Preprint number: UUITP43/18
We derive an approximate analytic relation between the number of consistent heterotic CalabiYau compactifications of string theory with the exact charged matter content of the standard model of particle physics and the topological data of the internal manifold: the former scaling exponentially with the number of Kähler parameters. This is done by an estimate of the number of solutions to a set of Diophantine equations representing constraints satisfied by any consistent heterotic string vacuum with three chiral massless families, and has been computationally checked to hold for complete intersection CalabiYau threefolds (CICYs) with up to seven Kähler parameters. When extrapolated to the entire CICY list, the relation gives ∼10^23 string theory standard models; for the class of CalabiYau hypersurfaces in toric varieties, it gives ∼10^723 standard models.

GenusOne String Amplitudes from Conformal Field Theory
Authors: Luis F. Alday, Agnese Bissi, Eric Perlmutter
Preprint number: UUITP42/18
We explore and exploit the relation between nonplanar correlators in N = 4 superYangMills, and highergenus closed string amplitudes in type IIB string theory. By conformal field theory techniques we construct the genusone, fourpoint string ampli tude in AdS5 × S5 in the lowenergy expansion, dual to an N = 4 superYangMills correlator in the ’t Hooft limit at order 1/c^2 in a strong coupling expansion. In the flat space limit, this maps onto the genusone, fourpoint scattering amplitude for type II closed strings in ten dimensions. Using this approach we reproduce several results obtained via string perturbation theory. We also demonstrate a novel mechanism to fix subleading terms in the flat space limit of AdS amplitudes by using string/Mtheory.

6D attractors and black hole microstates
Authors: Seyed Morteza Hosseini, Kiril Hristov, Achilleas Passias, and Alberto Zaffaroni
Preprint number: UUITP41/18We find a family of AdS2 × M4 supersymmetric solutions of the sixdimensional F(4) gauged supergravity coupled to one vector multiplet that arises as a low energy description of massive type IIA supergravity on (warped) AdS6 × S 4 . M4 is either a KählerEinstein manifold or a product of two Riemann surfaces with a constant curvature metric. These solutions correspond to the nearhorizon region of a family of static magnetically charged black holes. In the case where M4 is a product of Riemann surfaces, we successfully compare their entropy to a microscopic counting based on the recently computed topologically twisted index of the fivedimensional N = 1 USp(2N ) theory with Nf fundamental flavors and an antisymmetric matter field. Furthermore, our results suggest that the nearhorizon regions exhibit an attractor mechanism for the scalars in the matter coupled F(4) gauged supergravity, and we give a proposal for it.

Berends–Giele currents in Bern–CarrascoJohansson gauge for F^3 and F^4deformed Yang–Mills amplitudes
Authors: Lucia M. Garozzo, Leonel Queimada, Oliver Schlotterer
Preprint number: UUITP40/18
We construct new representations of treelevel amplitudes in Ddimensional gauge theories with deformations via highermassdimension operators \alpha' F^3 and \alpha'^2 F^4. Based on Berends—Giele recursions, the tensor structure of these amplitudes up to the order of \alpha’^2 is compactly organized via offshell currents. On the one hand, we present manifestly cyclic representations, where the complexity of the currents is systematically reduced. On the other hand, the duality between color and kinematics due to Bern, Carrasco and Johansson is manifested by means of nonlinear gauge transformations of the currents. We exploit the resulting notion of BernCarrascoJohansson gauge to provide explicit and manifestly local doublecopy representations for gravitational amplitudes involving \alpha' R^2 and \alpha'^2 R^3 operators.

The quantum swampland
Authors: Ulf H. Danielsson
Preprint number: UUITP39/18
In this paper we propose a quantum version of the swampland conjecture. We argue that quantum instabilities of de Sitter space discovered using field theoretical methods, are directly related to the difficulties in finding stringy de Sitter vacua.

(1,0) gauge theories on the sixsphere
Authors: Usman Naseer
Preprint number: UUITP38/18
We construct gauge theories with a vectormultiplet and hypermultiplets of (1,0) supersymmetry on the sixsphere. The gauge coupling on the sphere depends on the polar angle. This has a natural explanation in terms of the tensor branch of (1,0) theories on the sixsphere. For the vectormultiplet we give an offshell formulation for all supersymmetries. For hypermultiplets we give an offshell formulation for one supersymmetry. We show that the path integral for the vector multiplet localizes to solutions of the HermitianYangMills equation, which is a generalization of the (anti)self duality condition to higher dimensions. For the hypermultiplet, the path integral localizes to configurations where the field strengths of two complex scalars are related by an almost complex structure.

3d Mirror Symmetry from Sduality
Authors: Fabrizio Nieri, Yiwen Pan, Maxim Zabzine
Preprint number: UUITP37/18
We consider type IIB SL(2,Z) symmetry to relate the partition functions of different 5d supersymmetric Abelian linear quiver YangMills theories in the Ωbackground and squashed S5 background. By Higgsing Sdual theories, we extract new and old 3d mirror pairs. Generically, the Higgsing procedure yields 3d defects on intersecting spaces, and we derive new hyperbolic integral identities expressing the equivalence of the squashed S3 partition functions with additional degrees of freedom on the S1 intersection.

Formulae for Line Bundle Cohomology on CalabiYau Threefolds
Authors: Andrei Constantin and Andre Lukas
Preprint number: UUITP36/18
Abstract: We present closed form expressions for the ranks of all cohomology groups of holomorphic line bundles on several CalabiYau threefolds realised as complete intersections in products of projective spaces. The formulae have been obtained by systematising and extrapolating concrete calculations and they have been checked computationally. Although the intermediate calculations often involve laborious computations of ranks of Leray maps in the Koszul spectral sequence, the final results for cohomology follow a simple pattern. The space of line bundles can be divided into several different regions, and in each such region the ranks of all cohomology groups can be expressed as polynomials in the line bundle integers of degree at most three. The number of regions increases and case distinctions become more complicated for manifolds with a larger Picard number. We also find explicit cohomology formulae for several nonsimply connected CalabiYau threefolds realised as quotients by freely acting discrete symmetries. More cases may be systematically handled by machine learning algorithms.

Analytic Bootstrap for Boundary CFT
Authors: Agnese Bissi, Tobias Hansen, Alexander Söderberg
Preprint number: UUITP35/18
Abstract: We propose a method to analytically solve the bootstrap equation for two point functions in boundary CFT. We consider the analytic structure of the correlator in Lorentzian signature and in particular the discontinuity of bulk and boundary conformal blocks to extract CFT data. As an application, the correlator ⟨ϕϕ⟩ in ϕ^4 theory at the WilsonFisher fixed point is computed to order ϵ^2 in the ϵ expansion.

All fiveloop planar fourpoint functions of halfBPS operators in N=4 SYM
Authors : Dmitry Chicherin, Alessandro Georgoudis, Vasco Goncalves and Raul Pereira
Preprint number: UUITP34/18
We obtain all planar fourpoint correlators of halfBPS operators in N=4 SYM up to five loops. The ansatz for the integrand is fixed partially by imposing lightcone OPE relations between different correlators. We then fix the integrated correlators by comparing their asymptotic expansions with simple data obtained from integrability. We extract OPE coefficients and find a prediction for the triple wrapping correction of the hexagon form factors, which contributes already at the fiveloop order.

Bootstrapping the S5 partition function
Authors: Fabrizio Nieri, Yiwen Pan, Maxim Zabzine
Preprint number: UUITP33/18
Abstract: We consider U(N) SQCD on S5 and propose a Higgs branchlike expression for its partition function. We support the result by arguing that the knowledge of certain BPS codimension 2 and 4 defects arising from Higgsing is enough to reconstruct the bulk partition function, and that the defect partition functions satisfy a set of nonperturbative SchwingerDyson equations. We show that the result is consistent with, and naturally come from, the BPS/CFT perspective. In this language, the defect partition functions are identified with free boson correlators of the qVirasoro modular triple, and the constraint equations with Ward identities satisfied by the corresponding DotsenkoFateev qconformal blocks, providing a natural basis to expand the S5 partition function.

Surface defects in the D4D8 brane system
Authors: Giuseppe Dibitetto and Nicolò Petri
Preprint number: UUITP32/18
Abstract: A new class of exact supersymmetric solutions is derived within minimal d = 6 F(4) gauged supergravity. These flows are all characterized by a nontrivial radial profile for the 2form gauge potential included into the supergravity multiplet. In particular three solutions within this class are featured by an AdS3 foliation of the 6d background and by an AdS6 asymptotic geometry. Secondly, considering the simplest example of these, we give its massive IIA uplift describing a warped solution of the type AdS3 × S2 × S3 fibered over two intervals I _r × I_ξ . We interpret this background as the nearhorizon of a D4D8 system on which a bound state D2NS5D6 ends producing a surface defect. Finally we discuss its holographic dual interpretation in terms of a N = (0, 4) SCFT2 defect theory within the N = 2 SCFT5 dual to the AdS6 × S4 massive IIA warped vacuum.

On the atheorem in the Conformal Window
Authors: Vladimir Prochazka, Roman Zwicky
Preprint number: UUITP30/18
Abstract:
We show that for four dimensional gauge theories in the conformal window, the Euler anomaly, known as the $a$function, can be computed from a $2$point function of the trace of the energy momentum tensor making them more amenable to lattice simulations. Concretely, we derive an expression for the $a$function as an integral over the renormalisation scale of quantities related to $2$ and $3$point functions of the trace of the energy momentum tensor.The crucial ingredients are that the square of the field strength tensor is an exactly marginal operator at the Gaussian fixed point and that the relevant $3$point correlation function is finite when resummed to all orders. This allows us to define a scheme for which the $3$point contribution vanishes, thereby explicitly establishing the strong version of the $a$theorem for this class of theories.

AdS3 solutions with exceptional supersymmetry
Authors: Giuseppe Dibitetto, Gabriele Lo Monaco, Achilleas Passias, Nicolò Petri, Alessandro Tomasiello
Preprint number: UUITP29/18
Abstract: Among the possible superalgebras that contain the AdS3 isometries, two interesting possibilities are the exceptional F(4) and G(3). Their Rsymmetry is respectively SO(7) and G2, and the amount of supersymmetry N= 8 and N= 7. We find that there exist two (locally) unique solutions in type IIA supergravity that realize these superalgebras, and we provide their analytic expressions. In both cases, the internal space is obtained by a round sixsphere fibred over an interval, with an O8plane at one end. The Rsymmetry is the symmetry group of the sphere; in the G(3) case, it is broken to G2 by fluxes. We also find several numerical N= 1 solutions with G2 flavor symmetry, with various localized sources, including O2planes and O8planes.

Some remarks on (super)conformal KillingYano tensors
Authors: P.S. Howe, and U. Lindström
Preprint number: UUITP31/18
A KillingYano tensor is an antisymmetric tensor obeying a firstorder differential constraint similar to that obeyed by a Killing vector. In this article we consider generalisations of such objects, focusing on the conformal case. These generalised conformal KillingYano tensors are of mixed symmetry type and obey the constraint that the largest irreducible representation of o(n) contained in the tensor constructed from the firstderivative applied to such an object should vanish. Such tensors appear naturally in the context of spinning particles having N0 = 1 worldline supersymmetry and in the related problem of higher symmetries of Dirac operators. Generalisations corresponding to extended worldline supersymmetries and to spacetime super symmetry are discussed.

Holographic duals of fivedimensional SCFTs on a Riemann surface
Authors: Ibrahima Bah, Achilleas Passias and Peter Weck
Preprint number: UUITP28/18
We study the twisted compactifications of fivedimensional Seiberg SCFTs, with SU_M(2) x E_{N_f+1} flavor symmetry, on a generic Riemann surface that preserves four supercharges. The fivedimensional SCFTs are obtained from the decoupling limit of N D4branes probing a geometry of N_f<8 D8branes and an O8plane. In addition to the Rsymmetry, we can also twist the flavor symmetry by turning on background flux on the Riemann surface. In particular, in the string theory construction of the fivedimensional SCFTs, the background flux for the SU_M(2) has a geometric origin, similar to the topological twist of the Rsymmetry. We argue that the resulting lowenergy threedimensional theories describe the dynamics on the worldvolume of the N D4branes wrapped on the Riemann surface in the O8/D8 background. The Riemann surface can be described as a curve in a CalabiYau threefold that is a sum of two line bundles over it. This allows for an explicit construction of AdS_4 solutions in massive IIA supergravity dual to the worldvolume theories, thereby providing strong evidence that the threedimensional SCFTs exist in the lowenergy limit of the compactification of the fivedimensional SCFTs. We compute observables such as the free energy and the scaling dimensions of operators dual to D2brane probes; these have nontrivial dependence on the twist parameter for the U(1) in SU_M(2). The free energy exhibits the N^{5/2} scaling that is emblematic of fivedimensional SCFTs.

Emergent de Sitter cosmology from decaying AdS
Authors: Souvik Banerjee, Ulf Danielsson, Giuseppe Dibitetto, Suvendu Giri and Marjorie Schillo
Preprint number: UUITP27/18
Recent developments in string compactifications demonstrate obstructions to the simplest constructions of low energy cosmologies with positive vacuum energy. The existence of obstacles to creating scaleseparated de Sitter solutions indicates a UV/IR puzzle for embedding cosmological vacua in a unitary theory of quantum gravity. Motivated by this puzzle, we propose an embedding of positive energy FriedmannLemaîtreRobertsonWalker cosmology within string theory. Our proposal involves confining 4D gravity on a brane which mediates the decay from a nonsupersymmetric false AdS5 vacuum to a true vacuum. In this way, it is natural for a 4D observer to experience an effective positive cosmological constant coupled to matter and radiation, avoiding the need for scale separation or a fundamental de Sitter vacuum.

AdS2 x S7 solutions from D0  F1  D8 intersections
Authors: Giuseppe Dibitetto and Achilleas Passias
Preprint number: UUITP26/18We study an exhaustive analytic class of massive type IIA backgrounds preserving sixteen real supercharges and enjoying SL(2, R) x SO(8) bosonic symmetry. The corresponding geometry is described by AdS2 × S7 warped over a line, which turns out to emerge from taking the nearhorizon limit of D0  F1  D8 intersections. By studying the singularity structure of these solutions we find the possible presence of localized O8/D8 sources, as well as of fundamental strings smeared over the S7 . Finally we discuss the relation between the aforementioned solutions and the known AdS7 x S2 class through double analytic continuation.

General Relativity from Scattering Amplitudes
Authors: N.E.J. BjerrumBohr, Poul H. Damgaard, Guido Festuccia, Ludovic Planté and Pierre Vanhove
Preprint number: UUITP25/18
We outline the program to apply modern quantum field theory methods to calculate observables in classical general relativity through a truncation to classical terms of the multigraviton twobody onshell scattering amplitudes between massive fields. Since only longdistance interactions corresponding to nonanalytic pieces need to be included, unitarity cuts provide substantial simplifications for both postNewtonian and postMinkowskian expansions. We illustrate this quantum field theoretic approach to classical general relativity by computing the interaction potentials to second order in the postNewtonian expansion, as well as the scattering functions for two massive objects to second order in the postMinkowskian expansion. We also derive an allorder exact result for gravitational lightbylight scattering.

Unraveling conformal gravity amplitudes
Authors: Henrik Johansson, Gustav Mogull, Fei Teng
Preprint number: UUITP24/18
Conformal supergravity amplitudes are obtained from the doublecopy construction using gaugetheory amplitudes, and compared to direct calculations starting from conformal supergravity Lagrangians. We consider several different theories: minimal N = 4 conformal supergravity, nonminimal N = 4 BerkovitsWitten conformal supergravity, massdeformed versions of these theories, as well as supersymmetry truncations thereof. Coupling the theories to a YangMills sector is also considered. For all cases we give the gravity Lagrangians that the double copy implicitly generates. The two main results are: we determine a Lagrangian for the nonminimal BerkovitsWitten theory, and we uncover the doublecopy prescription for the minimal N = 4 conformal supergravity.

CalabiYau Manifolds and SU (3) Structure
Authors: Magdalena Larfors, Andre Lukas, Fabian Ruehle
Preprint number: UUITP23/18
We show that nontrivial SU(3) structures can be constructed on large classes of CalabiYau threefolds. Specifically, we focus on CalabiYau threefolds constructed as complete intersections inproducts of projective spaces, although we expect similar methods to apply to other constructions and also to CalabiYau fourfolds. Among the wide range of possible SU(3) structures we find StromingerHull systems, suitable for heterotic or type II string compactifications, on all complete intersection CalabiYau manifolds. These SU(3) structures of StromingerHull type have a nonvanishing and nonclosed threeform flux which needs to be supported by source terms in the associated Bianchi identity. We discuss the possibility of finding such source terms and present first steps towards their explicit construction. Provided suitable sources exist, our methods lead to CalabiYau compactifications of string theory with a non Ricciflat, physical metric which can be written down explicitly and in analytic form 
On the universality of latetime correlators in semiclassical 2d CFTs
Authors: Souvik Banerjee, JanWillem Bryan, Gideon Vos
Preprint number: UUITP22/18
In the framework of AdS3/ CFT2 correspondence, we present a systematic analysis of the late time thermalization of a two dimensional CFT state created by insertion of small number of heavy operators on the vacuum. We show that at late Lorentzian time, the universal features of this thermalization are solely captured by the eigenvalues of the monodromy matrix corresponding to the solutions of the uniformization equation. We discuss two different ways to extract the monodromy eigenvalues while bypassing the need for finding explicitly the full monodromy matrix  first, using a monodromy preserving diffeomorphism and second using ChenSimons formulation of gravity in AdS3. Both of the methods yield the same precise relation between the eigenvalues and the final black hole temperature at late Lorentzian time.

The Analytic Bootstrap for Large N ChernSimons Vector Models
Authors: Ofer Aharony, Luis F. Alday, Agnese Bissi, Ran Yacoby
Preprint number: UUITP21/18
Threedimensional ChernSimons vector models display an approximate higher spin symmetry in the large N limit. Their singletrace operators consist of a tower of weakly broken currents, as well as a scalar σ of approximate twist 1 or 2. We study the consequences of crossing symmetry for the fourpoint correlator of σ in a 1/N expansion, using analytic bootstrap techniques. To order 1/N we show that crossing symmetry fixes the contribution from the tower of currents, providing an alternative derivation of wellknown results by Maldacena and Zhiboedov. When σ has twist 1 its OPE receives a contribution from the exchange of σ itself with an arbitrary coefficient, due to the existence of a marginal sextic coupling. We develop the machinery to determine the corrections to the OPE data of doubletrace operators due to this, and to similar exchanges. This in turns allows us to fix completely the correlator up to three known truncated solutions to crossing. We then proceed to study the problem to order 1/N^2. We find that crossing implies the appearance of oddtwist doubletrace operators, and calculate their OPE coefficients in a large spin expansion. Also, surprisingly, crossing at order 1/N^2, implies nontrivial O(1/N) anomalous dimensions for eventwist doubletrace operators, even though such contributions do not appear in the fourpoint function at order 1/N (in the case where there is no scalar exchange). We argue that this phenomenon arises due to operator mixing. Finally, we analyse the bosonic vector model with a sextic coupling without gauge interactions, and determine the order 1/N^2 corrections to the dimensions of twist2 doubletrace operators.

Complete integrationbyparts reductions of the nonplanar hexagonbox via module intersections
Authors: Janko Böhm, Alessandro Georgoudis, Kasper J. Larsen, Hans Schönemann, Yang Zhang
Preprint number: UUITP16/18
We present the powerful moduleintersection integrationbyparts (IBP) method,
for multiloop Feynman integral reduction. With modern computational algebraic geome
try techniques, this new method manages to trim traditional IBP systems dramatically to
much simpler integralrelation systems on unitarity cuts. We demonstrate the power of this
method by the complete analytic reduction of twoloop fivepoint nonplanar hexagonbox integrals, with degreefour numerators, to the 73 master integrals. 
A massive class of N = 2 AdS(4) IIA solutions
Authors: Achilleas Passias, Daniel Prins, Alessandro Tomasiello
Preprint number: UUITP20/18
We initiate a classification of N=2 supersymmetric AdS(4) solutions of (massive) type IIA supergravity. The internal space is locally equipped with either an SU(2) or an identity structure. We focus on the SU(2) structure and determine the conditions it satisfies, dictated by supersymmetry. Imposing as an ansatz that the internal space is complex, we reduce the problem of finding solutions to a Riccati ODE, which we solve analytically. We obtain in this fashion a large number of new families of solutions, both regular as well as with localized O8planes and conical CalabiYau singularities. We also recover many solutions already discussed in the literature.

AdS Weight Shifting Operators
Authors: Miguel S. Costa and Tobias Hansen
Preprint number: UUITP19/18
We construct a new class of differential operators that naturally act on AdS harmonic functions. These are weight shifting operators that change the spin and dimension of AdS representations. Together with CFT weight shifting operators, the new operators obey crossing equations that relate distinct representations of the conformal group. We apply our findings to the computation of Witten diagrams, focusing on the particular case of cubic interactions and on massive, symmetric and traceless fields. In particular we show that tree level 4point Witten diagrams with arbitrary spins, both in the external fields and in the exchanged field, can be reduced to the action of weight shifting operators on similar 4point Witten diagrams where all fields are scalars. We also show how to obtain the conformal partial wave expansion of these diagrams using the new set of operators. In the case of 1loop diagrams with cubic couplings we show how to reduce them to similar 1loop diagrams with scalar fields except for a single external spinning field (which must be a scalar in the case of a twopoint diagram). As a bonus, we provide new CFT and AdS weight shifting operators for mixedsymmetry tensors.

Perturbing AdS(6) x S(4): linearised equations and spin2 spectrum
Authors: Achilleas Passias and Paul Richmond
Preprint number: UUITP18/18
We initiate the analysis of the KaluzaKlein mass spectrum of massive IIA supergravity on the warped AdS(6) x S(4) background, by deriving the linearised equations of motion of bosonic and fermionic fluctuations, and determining the mass spectrum of those of spin2. The spin2 modes are given in terms of hypergeometric functions and a careful analysis of their boundary conditions uncovers the existence of two branches of mass spectra, bounded from below. The modes that saturate the bounds belong to short multiplets which we identify in the representation theory of the f(4) symmetry superalgebra of the AdS(6) x S(4) solution.

Onepoint functions in βdeformed N = 4 SYM with defect
Author: Erik Widén
Preprint number: UUITP17/18
We generalize earlier results on onepoint functions in N = 4 SYM with a codimension one defect, dual to the D3D5brane setup in type IIB string theory on AdS5 × S5, to a similar setup in the βdeformed version of the theory. The treelevel vacuum expectation values of singletrace operators in the twoscalarsubsector are expressed as overlaps between a matrix product state (MPS) and Bethe states in the corresponding twisted spinchain picture. We comment on the properties of this MPS and present the simplest analytical overlaps and their behavior in a certain limit (of large k). Importantly, we note that the deformation alters earlier interpretations of the MPS as an integrable boundary state, seemingly obstructing simplifications of the overlaps analogous to the compact determinant formula found in the nondeformed theory. The results are supplemented with some supporting numerical results for operators of length eight with four excitations. 
Precision matching of circular Wilson loops and strings in AdS(5)xS(5)
Authors: Daniel MedinaRincon, Arkady A. Tseytlin and Konstantin Zarembo
Preprint number: UUITP15/18
Previous attempts to match the exact N=4 super YangMills expression for the expectation value of the 1/2BPS circular Wilson loop with the semiclassical AdS(5)xS(5) string theory prediction were not successful at the first subleading order. There was a missing prefactor lambda^(3/4) which could be attributed to the unknown normalization of the string path integral measure. Here we resolve this problem by computing, following arXiv:1712.07730, the ratio of the string partition functions corresponding to the circular Wilson loop and the special 1/4supersymmetric latitude Wilson loop. The fact that the latter has a trivial expectation value in the gauge theory allows us to relate the prefactor to the contribution of the three zero modes of the ``transverse" fluctuation operator in the 5sphere directions.

Morita equivalence and the generalized Kähler potential
Authors: Francis Bischoff, Marco Gualtieri and Maxim Zabzine
Preprint number: UUITP14/18
Abstract: We solve the problem of determining the fundamental degrees of freedom underlying a generalized K\"ahler structure of symplectic type. For a usual K\"ahler structure, it is wellknown that the geometry is determined by a complex structure, a K\"ahler class, and the choice of a positive (1,1)form in this class, which depends locally on only a single realvalued function: the K\"ahler potential. Such a description for generalized K\"ahler geometry has been sought since it was discovered in 1984. We show that a generalized K\"ahler structure of symplectic type is determined by a pair of holomorphic Poisson manifolds, a holomorphic symplectic Morita equivalence between them, and the choice of a positive Lagrangian brane bisection, which depends locally on only a single realvalued function, which we call the generalized K\"ahler potential. Our solution draws upon, and specializes to, the many results in the physics literature which solve the problem under the assumption (which we do not make) that the Poisson structures involved have constant rank. To solve the problem we make use of, and generalize, two main tools: the first is the notion of symplectic Morita equivalence, developed by Weinstein and Xu to study Poisson manifolds; the second is Donaldson's interpretation of a K\"ahler metric as a real Lagrangian submanifold in a deformation of the holomorphic cotangent bundle.