Bash scripts

Douglas Scofield

Evolutionary Biology Centre and UPPMAX
douglas.scofield@ebc.uu.se

slides at
http://files.webb.uu.se/uploader/1372/Uppmax-Bash-Scripts-pptx.pdf

Bash scripts overview

Why write a script?

Bash variable substitution and variable names
The first script

Positional parameters

Default values and checking values using ${...} constructs
Making decisions with if statements

File tests

Tracing execution with —x

Conditional execution with && and | |
Looping with 'for'

Looping with 'while read'

Background processes and job control

2/16/22

http://files.webb.uu.se/uploader/1372/Uppmax-Linux-II-III-pptx.pdf

What is a script, and why create one?

A script is a file containing statements to be interpreted
A Bash script contains statements for the Bash shell
— familiar commands (grep, cat, etc.)
— Bash syntax you are learning (<, >, |, $(...), ${...}, etc.)
— Bash syntax for control flow (&&, || , if, for, &, wait, etc.)
— Comments (lines that start with #)

Python scripts, Perl scripts, etc.

A script both describes and performs some process
— it can be viewed without interpreting (“running”) it

A script’s behaviour can be modified using parameters
A script can be reused, by you or someone else

Bash variable substitution

Normally, SVAR is replaced with the value of the variable
This is also true within double quotes "..."
This is not true within single quotes ...

mbp: course $ VAR=fuzzy
mbp: course $ echo $VAR

fuzzy
mbp: course $ echo "$VAR"
fuzzy
mbp: course $ echo '$VAR'
$VAR

Often, it is safest to enclose SVAR in double quotes, in case

the value of VAR contains spaces

— Bash could separate the value into space-delimited words otherwise

2/16/22

Bash variable names

Bash variable names begin with a letter and contain letters,
numbers and underscores '’

Proper substitution requires proper name recognition
Use curly brackets ${VAR} to make the limits of the variable
name explicit

An underscore can also be preceded by a backslash to remove
its 'part of a name' quality

mbp: course $ echo $VAR_file

mbp: course $ echo ${VAR}_file
fuzzy_file

mbp: course $ echo $VAR_file
fuzzy_file

A first Bash script

Go to the same directory where you created files ee, f, etc.

b166: ~/course $ cat ee
yesterday FHIE S R ror T

this file is a lltzle longer

Create this, as ‘script.sh’, save it, and exit the editor

this program will be used interpret the script
when you run it if the shell finds “#!’ at the
beginning of the file. to use PATH to find it:
#1/usr/bin/env python3

#!/bin/bash

cat ee

The “sh’ is a convention meaning ‘shell script’ (Bash or Bourne)
— Bash is an extension of Bourne shell, which is older and simpler

Make it executable (/bin/bash will be used to interpret it)

— chmod +x script.sh b166: ~/course $ 11
total 32

Run it! —-rw-rw-r--@ 1 staff 21 Aug 21 12:36 e
-rw-rw-r--@ 1 staff 50 Aug 21 12:36 ee

— ./SCI"ip‘t.Sh -rw-rw-r--@ 1 staff 29 Aug 21 12:36 f
-rwxrwxr-x 1 staff 21 Aug 21 12:37 script.shx

fb166: ~/course $./script.sh
this is a short file
this file is a little longer

2/16/22

Using a positional parameter

* Modify the script:

#!/bin/bash

FILE=$1 You could also use ${1} and ${FILE}

cat $FILE

* Run it with a parameter

— ./script.sh ee <«—— ‘ee’isthe first (only) positional parameter

fb166: ~/course $./script.sh ee
this is a short file
this file is a Litzle longer

* Run it without a parameter
— ./script.sh
* Why does that happen?

fbl66: ~/course $./SCrlp;.Sh

Try providing different parameters:

fb166: ~/course $./script.sh T
this file is a little longer
fb166: ~/course $./script.sh e
this is a short file

Optionally setting a parameter

+ Modify the script; |#!/bin/bash

FILE=${1:-ee}
cat $FILE

${1:-ee} If S1lis not set or is empty,
use ‘ee’ instead

It can be a variable: ${1:-$DEFAULT}

* Run it with and without a parameter

— ./script.sh f
— ./script.sh

* We could also use ${1-ee}, ‘is not set’ (without 'is empty')
— avariable can be set but empty ——— b166: ~/course § cat test.sh

— why do we not use this here?

#!/bin/bash
TEST=
OUT1=${TEST:-out}
0UT2=${TEST-out}

‘bash —x’ uses Bash to interpret the script, and

fb166: ~/course $ bash -x ./test.sh
+ TEST=

instructs Bash to print lines as they are interpreted. | + ouTi=out

+ 0UT2=

2/16/22

Produce an error if a parameter is missing

Modify the script; | #'/bin/bash

FILE=${1:?Please provide a parameter}
cat $FILE

${VAR:?msg} means exit with msg as an error if VAR is not
set or is empty
Run it with and without a parameter
— ./script.sh f i N
. fb166: ~/course $./script.sh T
- ./SCI"lpt.Sh this file is a little longer

fb166: ~/course $./script.sh
./script.sh: line 2: 1: Please provide a parameter

We could also leave off the colon, ${1?. ..}, ‘is not set’

9
There are many other ${...} features
* Yesterday | covered these for removing suffixes and prefixes
— ${VAR%suff}, ${VAR%%suff}, ${VAR#pref}, ${VAR##pref}
* Assign a value to VAR if it is missing with ${VAR:=value}
fbl66: ~/course $ cat assign.sh
#!/bin/bash
DIR=
echo "The directory to use is ${DIR:-/home/douglas}"
echo $DIR
echo "The directory to use is ${DIR:=/home/douglas}"
echo $DIR
fb166: ~/course $./assign.sh
The directory to use is /home/douglas
° Many more '/Fnsmg;giﬁé?gi to use is /home/douglas
* This is called parameter expansion or parameter substitution
— http://wiki.bash-hackers.org/syntax/pe
— http://www.tldp.org/LDP/abs/html/parameter-substitution.html
10

2/16/22

http://wiki.bash-hackers.org/syntax/pe
http://www.tldp.org/LDP/abs/html/parameter-substitution.html

Make a decision: if-then-else-fi

#!/bin/bash

FILE=${1:?Please provide a parameter}

Double brackets
Space separation

— ./script.sh f
— ./script.sh ee
— ./script.sh

i_F [["$FILE" == II_FII]]

then Quoted i £
echo "Thank you, catting now..." uoted in case of spaces

else then, else, fi on separate lines
echo "Parameter must be 'f'" ! ’ P

. exit 1 'exit 1' is failure

fi 'exit 0' is success (default)

cat $FILE exi

* Runit

fb1l66: ~/course $./script.sh f

Thank you, catting now...

this file is a little longer

fb166: ~/course $./script.sh ee

Parameter must be 'f'

fb166: ~/course $./script.sh

./script.sh: line 3: 1: Please provide a parameter

* http://www.tldp.org/LDP/abs/html/comparison-ops.html

11
Make a decision, simplified: if-then-fi
#!/bin/bash
FILE=${1:?Please provide a parameter}
if [["$FILE" != "f"]] Sense of test reversed
then
echo "Parameter must be 'f'"
exit 1
fi
echo "Thank you, catting now..." Failed test 'falls through'
cat $FILE
* Runit fb166: ~/course $./script.sh f
. Thank you, catting now...
— ./script.sh f this file is a little longer
. fb166: ~/course $./script.sh ee
— ./script.sh ee Parameter must be 'f'
. fb166: ~/course $./script.sh
- ./SCI"lp‘t.Sh ./script.sh: line 3: 1: Please provide a parameter
12

2/16/22

http://www.tldp.org/LDP/abs/html/comparison-ops.html

Testing for file conditions

#!/bin/bash

FILE=${1:?Please provide a parameter}
if [[! -e "$FILE"]] ; then

echo "$FILE does not exist" ; exit 1
elif [[-d "$FILE"]] ; then

echo "$FILE is a directory" ; exit 1
else

echo "$FILE might be ok..."

Double brackets (use spaces!)

-e exists

! not

-d isadirectory
-f isaregular file

Use ; to stack commands on
one line, including if and then

fi
cat $FILE elif combines else and if
. fb166: ~/course $./script.sh z
— ./script.sh z z does not exist
— mkdir thisdir fb166: ~/course $ mkdir thisdir
. . . fb1l66: ~/course $./script.sh thisdir
- -/SCr‘lpt-Sh thisdir thisdir is a directory
_ ./SCI"ipt.Sh ee fb166: ~/course $./script.sh ee

ee might be okK...

this is a short file

this file is a thzle longer

* Many others: http://tldp.org/LDP/Bash-Beginners-

Guide/html/sect 07 01.html

13

Tracing what is happening: -x

* Use 'bash —x' to run the script

— lines prefixed with '+' are statements as they are interpreted

#!/bin/bash

FILE=${1:?Please provide a parameter}
if [[! -e "$FILE"]] ; then

echo "$FILE does not exist" ; exit 1
elif [[-d "$FILE"]] ; then

echo "$FILE is a directory" ; exit 1

else rackham3: ~/course $ bash —-x ./script.sh thisdir
" . " + [=z "]
echo "$FILE might be ok... + case "$-" in some lines cut out
'Fl + Tmod vx:xl
+ FILE=thisdir
cat $FILE + [[! -e thisdir 1]

+ [[-d thisdir]]

+ echo 'thisdir is a directory'
thisdir is a directory

+ exit 1

* Use 'set —x' inside a script to enable it, 'set +x' to disable

— focus on particular parts of a script

14

2/16/22

http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_01.html

Run a command if another succeeded or failed

* Create the script 'success.sh':

#!/bin/bash
comment: these
cat ee ¥ > zz &&

are like mini if-then
cat zz

cat zzz || echo "something went wrong with zzz"
&& perform the next command if the first succeeded
|| perform the next command if the first failed
Run it

— chmod +x success.

— ./success.sh

sh mbp: course $./success.sh
this is a short file
this file is a little longer
this file is a little longer
cat: zzz: No such file or directory
something went_wrong with zzz

On the command line, separate commands with && instead of ; for
safety, for example if results are required for following commands

15
Do something to multiple items: for loops
* Create the script 'loop.sh":
#!/bin/bash Items in this list are assigned to
. o FILE one after the other, and the
for FILE in ee f thisdir statements between do ... done
do are interpreted for each
if [[-d "$FILE" 1] ; then
echo "$FILE is a directory"
fi
done
* Runit
mbp: course $./loop.sh
— chmod +x loop.sh thisdir is a directory
— ./loop.sh =
16

2/16/22

For loops can use wildcards for the list

* Modify the script 'loop.sh':

#!/bin/bash

for FILE in * ; do

done

test -d "$FILE" || echo

would be true

test -d FILE issuccessful when
if [[-d FILE]] ; then ...

fi

"$FILE is not a directory"

* * matches all files in the current directory

— ./loop.sh

* Any wildcard expression can be used

mbp: course $./loop.sh

assign.sh is not a directory

e is not a directory
ee is not a directory
f is not a directory
loop.sh is not a directory

script.sh is not a directory
success.sh is not a directory

test.sh is not a directory
zz is not a di:ectory

* This can be very useful on the command line:
— for F in *.txt ; do mv "$F" "00_$F" ; done

17
Loop over all parameters
* Modify to use "$@" for the list, which means all parameters
#!/bin/bash
echo "The name of this script is $0"
echo "There are $# parameters” | e “6@” and not $@ to wrap
. L each parameter with “ “
for FILE in "$@" ; do
test -d "$FILE" && echo "$FILE is a directory"”
done
mbp: course $./loop.sh ee f
* Runit The name of this script is ./loop.sh
There are 2 parameters
— ./loop.sh ee f mbp: course $./loop.sh thisdir zz
_ /loop sh thisdir zz The name of this script is ./loop.sh
: : There are 2 parameters
— ./loop.sh * thisdir is a directory
mbp: course $./loop.sh *
The name of this script is ./loop.sh
There are 10 parameters
thisdir is a directory
18

2/16/22

Use parallel to avoid using a for loop

* Asimple script that only tests, on only one parameter

#!/bin/bash

{ Save it as "dir-test.sh" and chmod +x

test -d "$1" && echo "$1 is a directory”

* GNU parallel runs this on all files

— module load gnuparallel |

--dry-run show, don't do

-v verbose
-k keep in same order

-j2 do 2 at a time!!

do things after this

— parallel --dry-run -v -k -j 2 ./dir-test.sh ::: *

* Now, run:

— parallel -v -k -j 2 ./dir-test.sh :::

s parallel ~v -k —j 2 ./dir-test.sh :::

./dir-test.sh B
./dir-test.sh D
./dir-test.sh Workbookl.txt
./dir-test.sh a
./dir-test.sh b
./dir-test.sh ¢
./dir-test.sh d

* ./dir-test.sh decompress
decompress is a directory
./dir-test.sh dir-test.sh
./dir-test.sh e
./dir-test.sh ee
./dir-test.sh f
./dir-test.sh ff
./dir-test.sh filelist

your directory may differ

*

19

Loop while a condition holds: while loops

* Create the script 'while.sh'

#!/bin/bash

cat "$FILE" | while read -r LINE
do
if [[-f "$LINE" 1] ; then

fi
done

FILE=${1:?Please provide a file to read}

While there are lines le
SFILE, read each into LI

ftin
NE

echo "$LINE is a file, working on $LINE ..."
other commands could go here

* Runit

imbp: course $./while.sh files

[Working on assign.sh ...

— 1s *.sh > files
— chmod +x while.sh

EWorking on loop.sh ...
EWOrking on script.sh ...

— ./while.sh files iWork}ng on success.sh ...
Working on test.sh ...

Working on while.sh ...

20

2/16/22

10

Multiple things at once: background processes

* Typically a command is running in the foreground
— the shell waits for it to complete before returning a prompt

* Commands can be run in the background using '&'
— useful if the command might take a while to complete

mbp: course $ find . -name "x.sh" > output &

[1] 18503
mbp: course $
[1]1+ Done _ find . -name "x.sh" > output

* Multiple commands can be run in the background
* Useful within a script, too

* Use 'wait' to wait until all background processes are done
— e.g., if background processes are creating files needed for a next step
— without 'wait', a script can finish before its background processes
— with SLURM on Uppmakx, this will kill all user processes run by the job

21

Use job control to manipulate running processes

e Ctrl-c Kill the foreground process
e Ctrl-z Stop the foreground process

* bg Continue running stopped process but in background
* & Put new process in the background immediately

* jobs List background processes

o fg Move background process to foreground

mbp: course $ find / -name "x*.sh" >allscripts 2>/dev/null

Ii]+ Stopped find / -name "x.sh" > allscripts 2> /dev/null

mbp: course $ bg

[1]1+ find / -name "x.sh"™ > allscripts 2> /dev/null &

mbp: course $ jobs

[11+ Running find / -name "x.sh" > allscripts 2> /dev/null &
mbp: course $ fg

find / -name "x.sh" > allscripts 2> /dev/null

2le

mbp: course $ jobs

mbp: course $ I

https://www.gnu.org/software/bash/manual/html _node/Job-Control-Builtins.html

22

2/16/22

11

http://www.gnu.org/software/bash/manual/html_node/Job-Control-Builtins.html

There is much more to learn about Bash

* Simple maths can be done within ((...)) (without $)

mbp: course $ X=10

mbp: course $ ((X =X + 5))
mbp: course $ echo $X

15

File dates: if [["$FILE1" -nt "$FILE2"]] ; then ...

* A separate subshell can be created with (...)
— putitinthe background: (commandl; command2) &

These slides contain enough to do many useful things

— I rarely use more than this

http://linuxconfig.org/bash-scripting-tutorial
http://ryanstutorials.net/bash-scripting-tutorial/
http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html

fi

23

2/16/22

12

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html

