
2/16/22

1

Bash scripts

Douglas Scofield
Evolutionary Biology Centre and UPPMAX

douglas.scofield@ebc.uu.se

slides at
http://files.webb.uu.se/uploader/1372/Uppmax-Bash-Scripts-pptx.pdf

1

Bash scripts overview
• Why write a script?
• Bash variable substitution and variable names
• The first script
• Positional parameters
• Default values and checking values using ${...} constructs
• Making decisions with if statements
• File tests
• Tracing execution with –x
• Conditional execution with && and ||
• Looping with 'for'
• Looping with 'while read'
• Background processes and job control

2

http://files.webb.uu.se/uploader/1372/Uppmax-Linux-II-III-pptx.pdf

2/16/22

2

What is a script, and why create one?
• A script is a file containing statements to be interpreted
• A Bash script contains statements for the Bash shell

– familiar commands (grep, cat, etc.)
– Bash syntax you are learning (< , > , | , $(...), ${...}, etc.)
– Bash syntax for control flow (&& , || , if , for , & , wait , etc.)
– Comments (lines that start with #)

• Python scripts, Perl scripts, etc.

• A script both describes and performs some process
– it can be viewed without interpreting (“running”) it

• A script’s behaviour can be modified using parameters
• A script can be reused, by you or someone else

3

Bash variable substitution
• Normally, $VAR is replaced with the value of the variable
• This is also true within double quotes "..."
• This is not true within single quotes '...'

• Often, it is safest to enclose $VAR in double quotes, in case
the value of VAR contains spaces
– Bash could separate the value into space-delimited words otherwise

4

2/16/22

3

Bash variable names
• Bash variable names begin with a letter and contain letters,

numbers and underscores '_'
• Proper substitution requires proper name recognition
• Use curly brackets ${VAR} to make the limits of the variable

name explicit
• An underscore can also be preceded by a backslash to remove

its 'part of a name' quality

5

A first Bash script
• Go to the same directory where you created files ee, f, etc.

yesterday
• Create this, as ‘script.sh’, save it, and exit the editor

• The ‘.sh’ is a convention meaning ‘shell script’ (Bash or Bourne)
– Bash is an extension of Bourne shell, which is older and simpler

• Make it executable (/bin/bash will be used to interpret it)
– chmod +x script.sh

• Run it!
– ./script.sh

#!/bin/bash

cat ee

this program will be used interpret the script
when you run it if the shell finds ‘#!’ at the
beginning of the file. to use PATH to find it:
#!/usr/bin/env python3

6

2/16/22

4

Using a positional parameter
• Modify the script:

• Run it with a parameter
– ./script.sh ee

• Run it without a parameter
– ./script.sh

• Why does that happen?

#!/bin/bash

FILE=$1
cat $FILE

‘ee’ is the first (only) positional parameter

Try providing different parameters:

You could also use ${1} and ${FILE}

7

Optionally setting a parameter
• Modify the script:

• Run it with and without a parameter
– ./script.sh f
– ./script.sh

• We could also use ${1-ee}, ‘is not set’ (without 'is empty')
– a variable can be set but empty
– why do we not use this here?

#!/bin/bash

FILE=${1:-ee}
cat $FILE

${1:-ee} If $1 is not set or is empty,
use ‘ee’ instead

It can be a variable: ${1:-$DEFAULT}

‘bash –x’ uses Bash to interpret the script, and
instructs Bash to print lines as they are interpreted.

8

2/16/22

5

Produce an error if a parameter is missing
• Modify the script:

• ${VAR:?msg} means exit with msg as an error if VAR is not
set or is empty

• Run it with and without a parameter
– ./script.sh f
– ./script.sh

• We could also leave off the colon, ${1?...}, ‘is not set’

#!/bin/bash

FILE=${1:?Please provide a parameter}
cat $FILE

9

There are many other ${...} features
• Yesterday I covered these for removing suffixes and prefixes

– ${VAR%suff}, ${VAR%%suff}, ${VAR#pref}, ${VAR##pref}

• Assign a value to VAR if it is missing with ${VAR:=value}

• Many more
• This is called parameter expansion or parameter substitution

– http://wiki.bash-hackers.org/syntax/pe
– http://www.tldp.org/LDP/abs/html/parameter-substitution.html

10

http://wiki.bash-hackers.org/syntax/pe
http://www.tldp.org/LDP/abs/html/parameter-substitution.html

2/16/22

6

Make a decision: if-then-else-fi

• Run it
– ./script.sh f
– ./script.sh ee
– ./script.sh

• http://www.tldp.org/LDP/abs/html/comparison-ops.html

#!/bin/bash

FILE=${1:?Please provide a parameter}
if [["$FILE" == "f"]]
then

echo "Thank you, catting now..."
else

echo "Parameter must be 'f'"
exit 1

fi
cat $FILE

Double brackets
Space separation

Quoted in case of spaces

then, else, fi on separate lines

'exit 1' is failure
'exit 0' is success (default)

11

Make a decision, simplified: if-then-fi

• Run it
– ./script.sh f
– ./script.sh ee
– ./script.sh

#!/bin/bash

FILE=${1:?Please provide a parameter}
if [["$FILE" != "f"]]
then

echo "Parameter must be 'f'"
exit 1

fi
echo "Thank you, catting now..."
cat $FILE

Sense of test reversed

Failed test 'falls through'

12

http://www.tldp.org/LDP/abs/html/comparison-ops.html

2/16/22

7

Testing for file conditions

– ./script.sh z
– mkdir thisdir
– ./script.sh thisdir
– ./script.sh ee

• Many others: http://tldp.org/LDP/Bash-Beginners-
Guide/html/sect_07_01.html

#!/bin/bash

FILE=${1:?Please provide a parameter}
if [[! -e "$FILE"]] ; then

echo "$FILE does not exist" ; exit 1
elif [[-d "$FILE"]] ; then

echo "$FILE is a directory" ; exit 1
else

echo "$FILE might be ok..."
fi
cat $FILE

Double brackets (use spaces!)

-e exists
! not
-d is a directory
-f is a regular file

Use ; to stack commands on
one line, including if and then

elif combines else and if

13

Tracing what is happening: -x
• Use 'bash –x' to run the script

– lines prefixed with '+' are statements as they are interpreted

• Use 'set –x' inside a script to enable it, 'set +x' to disable
– focus on particular parts of a script

#!/bin/bash

FILE=${1:?Please provide a parameter}
if [[! -e "$FILE"]] ; then

echo "$FILE does not exist" ; exit 1
elif [[-d "$FILE"]] ; then

echo "$FILE is a directory" ; exit 1
else

echo "$FILE might be ok..."
fi
cat $FILE

some lines cut out

14

http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_01.html

2/16/22

8

Run a command if another succeeded or failed
• Create the script 'success.sh':

• Run it
– chmod +x success.sh
– ./success.sh

• On the command line, separate commands with && instead of ; for
safety, for example if results are required for following commands

#!/bin/bash
comment: these are like mini if-then
cat ee f > zz && cat zz
cat zzz || echo "something went wrong with zzz"

&& perform the next command if the first succeeded
|| perform the next command if the first failed

15

Do something to multiple items: for loops
• Create the script 'loop.sh':

• Run it
– chmod +x loop.sh
– ./loop.sh

#!/bin/bash

for FILE in ee f thisdir
do

if [[-d "$FILE"]] ; then
echo "$FILE is a directory"

fi
done

Items in this list are assigned to
FILE one after the other, and the
statements between do ... done
are interpreted for each

16

2/16/22

9

For loops can use wildcards for the list
• Modify the script 'loop.sh':

• * matches all files in the current directory
– ./loop.sh

• Any wildcard expression can be used
• This can be very useful on the command line:

– for F in *.txt ; do mv "$F" "00_$F" ; done

#!/bin/bash

for FILE in * ; do
test –d "$FILE" || echo "$FILE is not a directory"

done

test –d FILE is successful when
if [[-d FILE]] ; then ... fi
would be true

17

Loop over all parameters
• Modify to use "$@" for the list, which means all parameters

• Run it
– ./loop.sh ee f
– ./loop.sh thisdir zz
– ./loop.sh *

#!/bin/bash

echo "The name of this script is $0"
echo "There are $# parameters"

for FILE in "$@" ; do
test –d "$FILE" && echo "$FILE is a directory"

done

Use “$@” and not $@ to wrap
each parameter with “ “

18

2/16/22

10

Use parallel to avoid using a for loop
• A simple script that only tests, on only one parameter

• GNU parallel runs this on all files

– module load gnuparallel

– parallel --dry-run -v -k -j 2 ./dir-test.sh ::: *

• Now, run:

– parallel -v -k -j 2 ./dir-test.sh ::: *

#!/bin/bash

test –d "$1" && echo "$1 is a directory"

--dry-run show, don't do
-v verbose
-k keep in same order
-j 2 do 2 at a time!!
::: do things after this

Save it as "dir-test.sh" and chmod +x

your directory may differ

19

Loop while a condition holds: while loops
• Create the script 'while.sh'

• Run it
– ls *.sh > files
– chmod +x while.sh
– ./while.sh files

#!/bin/bash

FILE=${1:?Please provide a file to read}
cat "$FILE" | while read –r LINE
do

if [[-f "$LINE"]] ; then
echo "$LINE is a file, working on $LINE ..."
other commands could go here

fi
done

While there are lines left in
$FILE, read each into LINE

20

2/16/22

11

Multiple things at once: background processes
• Typically a command is running in the foreground

– the shell waits for it to complete before returning a prompt

• Commands can be run in the background using '&'
– useful if the command might take a while to complete

• Multiple commands can be run in the background
• Useful within a script, too
• Use 'wait' to wait until all background processes are done

– e.g., if background processes are creating files needed for a next step
– without 'wait', a script can finish before its background processes
– with SLURM on Uppmax, this will kill all user processes run by the job

21

Use job control to manipulate running processes

• Ctrl-c Kill the foreground process
• Ctrl-z Stop the foreground process
• bg Continue running stopped process but in background
• & Put new process in the background immediately
• jobs List background processes
• fg Move background process to foreground

https://www.gnu.org/software/bash/manual/html_node/Job-Control-Builtins.html

22

http://www.gnu.org/software/bash/manual/html_node/Job-Control-Builtins.html

2/16/22

12

There is much more to learn about Bash
• Simple maths can be done within ((...)) (without $)

• File dates: if [["$FILE1" –nt "$FILE2"]] ; then ... fi
• A separate subshell can be created with (...)

– put it in the background: (command1; command2) &

• These slides contain enough to do many useful things
– I rarely use more than this

http://linuxconfig.org/bash-scripting-tutorial
http://ryanstutorials.net/bash-scripting-tutorial/
http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html

23

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html

