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Abstract In these proceedings we review and expand on the recent appearance of
iterated integrals on an elliptic curve in string perturbation theory. We represent
the low-energy expansion of one-loop open-string amplitudes at multiplicity four
and five as iterated integrals over holomorphic Eisenstein series. The framework of
elliptic multiple zeta values serves as a link between the punctured Riemann surfaces
encoding string interactions and the iterated Eisenstein integrals in the final results.
In the five-point setup, the treatment of kinematic poles is discussed explicitly.

1 Introduction

Open-string scattering amplitudes at the one-loop level have proven to be a valuable
laboratory for the application of techniques related to iterated elliptic integrals and
elliptic multiple zeta values. Although elliptic curves and the classical elliptic in-
tegrals are one of the best-studied topics of 18th/19th-century mathematics, iterated
integrals on elliptic curves and their associated special values are still a prominent
topic in the recent mathematics literature, see for instance refs. [1–3].

In high-energy physics, several integrals related to various scattering amplitudes
in QCD have been solved using methods and techniques inherent to the elliptic
curve. The concept of iterated integrals on an elliptic curve, however, made a first
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appearance in physics via one-loop scattering amplitudes in open-superstring theory
in [4]. Since then, several refinements and extensions of the techniques have been
put forward from different perspectives, see for examples refs. [5–10].

Moreover, first connections between the open-string setup of iterated integrals
and non-holomorphic modular invariants encountered in closed-string amplitudes
have been investigated in ref. [11]. The modular invariants in closed-string calcula-
tions are formulated in the framework of modular graph functions [12, 13], where
tremendous progress in understanding their multiloop systematics has been made
during the last couple of months [14, 15].

The low-energy expansion of one-loop scattering amplitudes in open-superstring
theory gives rise to iterated elliptic integrals evaluated at special points: those func-
tions of the modular parameter τ of the elliptic curve are called elliptic multiple
zeta values and come in a twisted and an untwisted version. Both, untwisted and
twisted elliptic multiple zeta values, however, allow for an alternative representa-
tion in terms of iterated integrals over the modular parameter τ: iterated Eisenstein
integrals.

In these proceedings we are extending earlier results in two directions: we present
low-energy expansions for the planar and non-planar five-point amplitudes, and we
cast the four- and five-point expressions in the language of iterated Eisenstein inte-
grals.

The current proceedings are structured as follows: in section 2 we provide back-
ground information and define the mathematical setting for the calculation of one-
loop open-string amplitudes at various multiplicities. We classify the occurring in-
tegrals and state the integral contributions to be evaluated at the four- and five-point
level. In section 3 a short introduction to twisted and untwisted elliptic multiple zeta
values is provided. We relate these special values to iterated integrals over different
flavors of Eisenstein series. This representation allows to infer relations between
different twisted and untwisted elliptic multiple zeta values, which paves the way
towards a canonical representation. Accordingly, in sections 4 and 5 we present and
discuss the results of the four- and five-point integrals from section 2 and repre-
sent them in terms of conventional elliptic multiple zeta values as well as iterated
integrals over Eisenstein series.

2 One-loop open-string amplitudes, planar and non-planar

2.1 General setup, planar and non-planar

Scattering amplitudes in string theories are derived from punctured Riemann sur-
faces called worldsheets whose genus corresponds to the loop order in perturbation
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theory. In these proceedings we are going to consider the one-loop order exclu-
sively, where the relevant topology for closed strings is a torus, and open-string
amplitudes receive contributions from worldsheets of cylinder- and Mœbius-strip
topologies. In all cases, the punctures correspond to the insertion of external states
on the worldsheet via vertex operators; those are conformal primary fields that carry
the information on the external momenta and polarizations. For open strings, the
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Fig. 1 The worldsheets for one-loop scattering of open strings include the topology of a cylinder.
Conformal invariance on the worldsheet can be used to map external states to punctures on the
cylinder boundaries. If vertex operators are inserted on one boundary only, the situation is referred
to as the planar cylinder whereas the second topology is called the non-planar cylinder.

vertex operators are inserted on the worldsheet boundaries, see figure 1. Moreover,
each external open-string state carries additional degrees of freedom encoded in Lie-
algebra generators ta, called Chan–Paton factors. They enter scattering amplitudes
in the form of traces, where the ordering of the generators reflects the distribution of
vertex operators over the boundaries [16]. We will only consider massless vibration
modes of the open superstring as an external state, i.e. one-loop scattering of gauge
bosons and their superpartners. Accordingly, the Chan–Paton degrees of freedom of
the external states are often referred to as color.

Having a single boundary only, the Mœbius strip can only contribute single traces
to the n-point amplitude

Mn
Moeb =−32 ∑

ρ∈Sn−1

Tr(t1tρ(2)tρ(3) . . . tρ(n))AMoeb(1,ρ(2),ρ(3), . . . ,ρ(n)) , (1)

while the two boundary components of the cylinder admit double traces in the color
decomposition. Accordingly, for a four-point amplitude the planar and non-planar
cylinder contributions read
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M4
cyl = ∑

ρ∈S3

{
N Tr(t1tρ(2)tρ(3)tρ(4))Acyl(1,ρ(2),ρ(3),ρ(4))

+Tr(t1tρ(2))Tr(tρ(3)tρ(4))Acyl(1,ρ(2)|ρ(3),ρ(4))
}

(2)

+
{

Tr(t1)Tr(t2t3t4)Acyl(1|2,3,4)+(1↔ 2,3,4)
}
.

At higher multiplicity n, the analogous double-trace expressions in

Mn
cyl = N ∑

ρ∈Sn−1

Tr(t1tρ(2) . . . tρ(n))Acyl(1,ρ(2), . . . ,ρ(n))+double traces , (3)

comprise all partitions of the external states over the two boundaries along with all
cyclically inequivalent arrangements. For instance, the double-trace sector of the
five-point amplitude features permutations of Tr(t1t2)Tr(t3t4t5)Acyl(1,2|3,4,5) and
Tr(t1)Tr(t2t3t4t5)Acyl(1|2,3,4,5), with an obvious generalization to higher multi-
plicity.

The number N of colors in the single-trace sector of eqs. (2) and (3) arises from
the trace over the identity matrix corresponding to the empty boundary component.
The color-ordered amplitudes AMoeb and Acyl in eqs. (1) and (3) are determined by
integrating a correlation function of vertex operators over the punctures such that
their cyclic ordering on each boundary component matches the accompanying color
traces [16]. In the parametrization of the cylinder as half of a torus with purely
imaginary modular parameter τ = it, t ∈R, see figure 2, the integration domains for
the punctures are of the form

D(1,2, . . . , j| j+1, . . . ,n) = {zi ∈ C , Imz1,2,..., j = 0 , Imz j+1,...,n =
t
2 ,

0≤ Rez1 < Rez2 < .. . < Rez j < 1 , 0≤ Rez j+1 < .. . < Rezn < 1} . (4)
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Fig. 2 In the boundary parametrization eq. (4), worldsheets of cylinder topology are mapped to
the shaded regions in the left (right) panel for the planar (non-planar) case. These regions cover
half of a torus with modular parameter τ = it and identifications of edges marked by || and || ,
respectively. The Mœbius-strip topology is not drawn here as its contributions to the amplitude can
be inferred from the planar cylinder [17], cf. eqs. (6) and (8).
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In particular, eq. (4) refers to the non-planar amplitude Acyl(1,2, . . . , j| j+1, . . . ,n)
along with the double trace Tr(t1t2 . . . t j)Tr(t j+1 . . . tn) with j = 1,2, . . . ,n−1. We
will also write D(1,2, . . . ,n) = D(1,2, . . . ,n| /0) for the integration domain of the
planar cylinder amplitude Acyl(1,2, . . . ,n) in eq. (3).

The correlation functions in the integrand will be denoted by Kn. They depend
on the punctures z j, the modular parameter τ as well as the external polarizations
and momenta of the gauge supermultiplet. For the cylinder topology, the integration
domain for modular parameters τ = it is t ∈ R+ or

q = e2πiτ = e−2πt , q ∈ (0,1) . (5)

Then, the expression for color-ordered cylinder amplitudes reads

Acyl(1,2, . . . , j| j+1, . . . ,n) =
∫ 1

0

dq
q

∫
D(1,2,..., j| j+1,...,n)

dz1 dz2 . . . dzn δ (z1)Kn , (6)

where translation invariance on a genus-one surface has been used to fix z1 = 0
through a delta-function insertion. We will also express the punctures in eq. (4) in
terms of real variables xi ∈ (0,1) and parametrize D(1,2, . . . , j| j+1, . . . ,n) via

zi =
{

xi : i=1,2,..., j
τ
2+xi : i= j+1,...,n , 0≤ x1 < x2 < .. . < x j < 1 , 0≤ x j+1 < .. . < xn < 1 . (7)

For single-trace amplitudes in eq. (6) with j = n, the integration over q introduces
endpoint divergences as q→ 0. The latter cancel against the divergent contributions
from the Mœbius strip in eq. (1)

AMoeb(1,2, . . . ,n) =
∫ −1

0

dq
q

∫
D(1,2,...,n)

dz1 dz2 . . . dzn δ (z1)Kn (8)

if N = 32, i.e. if the gauge group1 is taken to be SO(32) [17]. The change of variables
leading to the range q ∈ (−1,0) in eq. (8) can also be found in the reference.

In this work, we will be interested in the low-energy expansion of the integrals
over the cylinder punctures in eq. (6) at fixed value of q but unspecified choice of
the gauge group. For instance, the integrals over D(1,2,3|4) turn out to have an
interesting mathematical structure, even though their coefficients ∼ Tr(t4) vanish
for the physically preferable gauge group SO(32). At the level of the integrand w.r.t.
q, the Mœbius-strip results in eq. (8) can be inferred from the planar instance of
eq. (6) by sending q→−q [17].

1 The choice of gauge group SO(32) also ensures that the hexagon gauge anomaly in (n≥ 6)-point
open-superstring amplitudes cancels [18, 19].



6 Johannes Broedel and Oliver Schlotterer

2.2 Four-point amplitudes

The four-point cylinder amplitude eq. (6) of massless open-superstring states is gov-
erned by the correlation function

K4 = s12 s23 Atree
SYM(1,2,3,4)

4

∏
i< j

exp
( 1

2 si jG(zi j,τ)
)
, (9)

which has firstly been derived for external bosons in 1982 [20]. The exponentials of
eq. (9) involve dimensionless Mandelstam variables si j

si j = 2α
′ki · k j (10)

with inverse string tension α ′. Moreover, eq. (9) features the bosonic Green function
on a genus-one worldsheet

G(z,τ) = log
∣∣∣∣ θ1(z,τ)
θ ′1(0,τ)

∣∣∣∣2− 2π

Imτ
(Imz)2 . (11)

with zi j = zi− z j as its first argument, where θ1 is the odd Jacobi function

θ1(z,τ) = 2q1/8 sin(πz)
∞

∏
n=1

(1−qn)(1−2qn cos(2πz)+q2n) . (12)

Finally, external polarizations enter eq. (9) through the color-ordered (super-)Yang–
Mills tree-level amplitude Atree

SYM(1,2,3,4).
With respect to relabeling of the external legs, there are three inequivalent rep-

resentatives for the planar and non-planar four-point amplitudes. Using eqs. (6)
and (9), they can be written as

Acyl(1,2,3,4) = s12s23Atree
SYM(1,2,3,4)

∫ 1

0

dq
q

I1234(si j,q)

Acyl(1,2,3|4) =
1
2

s12s23Atree
SYM(1,2,3,4)

∫ 1

0

dq
q

I123|4(si j,q) (13)

Acyl(1,2|3,4) =
1
2

s12s23Atree
SYM(1,2,3,4)

∫ 1

0

dq
q

I12|34(si j,q) ,

where the integrals over the positions of the punctures defined in eq. (7) read

I1234(si j,q) =
∫ 1

0
dx4

∫ x4

0
dx3

∫ x3

0
dx2

∫ x2

0
dx1 δ (x1)exp

( 4

∑
i< j

si j

2
G(xi j)

)
I123|4(si j,q) =

( 4

∏
l=1

∫ 1

0
dxl

)
δ (x1)exp

( 3

∑
i< j

si j

2
G(xi j)+

3

∑
j=1

s j4

2
G( τ

2+xi j)
)

(14)
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I12|34(si j,q) =
( 4

∏
l=1

∫ 1

0
dxl

)
δ (x1)exp

( s12

2
G(x12)+

s34

2
G(x34)+ ∑

i=1,2
j=3,4

si j

2
G( τ

2+xi j)
)
.

Here and below, the dependence on τ in the Green functions is left implicit for
ease of notation. The factors of 1

2 in eq. (13) are introduced to obtain a more con-
venient description of the integration domain for the non-planar cases I123|4(si j,q)
and I12|34(si j,q): The natural integration domains 0 ≤ x1 < x2 < x3 < 1 and 0 ≤
x3 < x4 < 1 expected from Tr(t1t2t3) and Tr(t3t4) can be rewritten to yield an inde-
pendent integration of all the xi over (0,1) when taking the symmetry of the color
factors or the integrands into account.

The integrals in eq. (14) are the central four-point quantities in these proceedings.
In section 4, we are going to review and extend the results of refs. [4, 6] on their
low-energy expansion around α ′ = 0, i.e. the Taylor expansion in the dimensionless
Mandelstam invariants eq. (10). Note that momentum conservation and the choice
of massless external states in eq. (9) with k2

j = 0 ∀ j = 1,2,3,4 relate the four-point
Mandelstam invariants

4

∑
j=1

k j = 0 ⇒ s12 = s34 , s14 = s23 , s13 = s24 =−s12− s23 . (15)

Accordingly, the integrand in eq. (9) is unchanged if the Green function is shifted
by G(z,τ)→ G(z,τ)+ f (τ) as long as f (τ) does not depend on the position of the
punctures.

2.3 Five-point amplitudes

The massless five-point correlator for the cylinder amplitude eq. (6) is given by2

[23, 24]

K5 =
[

f (1)23 s23 C1|23,4,5 +(23↔ 24,25,34,35,45)
] 5

∏
i< j

exp
( 1

2 si jG(zi j)
)
, (16)

where the Green function is defined in eq. (11) and we use the following shorthand
for doubly-periodic functions of the punctures with a simple pole at zi−z j ∈Z+τZ

f (1)i j = ∂z logθ1(zi j,τ)+2πi
Imzi j

Imτ
= ∂zG(zi j,τ) . (17)

The kinematic factors in eq. (16) obey symmetries C1|23,4,5 = C1|23,5,4 = −C1|32,4,5
and can be expressed in terms of (super-)Yang–Mills tree-level amplitudes [24]

2 Earlier work on five- and higher-point correlation functions for one-loop open-superstring ampli-
tudes includes refs. [21, 22].
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C1|23,4,5 = s45
[
s24 Atree

SYM(1,3,2,4,5)− s34 Atree
SYM(1,2,3,4,5)

]
. (18)

The color decomposition of the five-point cylinder amplitude is a straightforward
generalization of eq. (2), and we collectively denote the color-ordered amplitudes
by Acyl(λ ) with λ = 1,2,3,4,5 in the planar and λ = 1,2,3,4|5 or λ = 1,2,3|4,5
in the non-planar sector. Then, one can combine eqs. (16) and (18) to bring all the
cylinder contributions to the five-point amplitude into the form

Acyl(λ )=
∫ 1

0

dq
q

[
I23
λ
(si j,q)Atree

SYM(1,2,3,4,5)+I32
λ
(si j,q)Atree

SYM(1,3,2,4,5)
]

(19)

for some integrals I23
λ
(si j,q) and I32

λ
(si j,q) over the punctures whose domain D(λ )

is defined by eq. (4). The color-ordered (super-)Yang-Mills amplitudes obtained
from relabelings of eq. (18) have been written in terms of a two-element basis of
Atree

SYM(1,2,3,4,5) and Atree
SYM(1,3,2,4,5) using Bern–Carrasco–Johansson (BCJ) re-

lations [25]. For planar choices of λ , for example, both I23
λ
(si j,q) and I32

λ
(si j,q) can

be reduced to the following permutation-inequivalent integrals

H12
12345(si j,q) =

∫ 1

0
dx5

( 4

∏
l=1

∫ xl+1

0
dxl

)
δ (x1) f (1)12 exp

( 5

∑
i< j

si j

2
G(xi j)

)
(20)

Ĥ13
12345(si j,q) =

∫ 1

0
dx5

( 4

∏
l=1

∫ xl+1

0
dxl

)
δ (x1) f (1)13 exp

( 5

∑
i< j

si j

2
G(xi j)

)
. (21)

The hat-notation in (21) and (23) below is used to distinguish integrals Ĥ i j
λ

with a
regular Taylor expansion around si j=0 from cases H i j

λ
with kinematic poles of the

form s−1
i j , see section 5.1. In the non-planar sector with λ = 1,2,3|4,5, on the other

hand, I23
λ
(si j,q) and I32

λ
(si j,q) can be assembled from permutations of

H12
123|45(si j,q) =

( 5

∏
l=3

∫ 1

0
dxl

)∫ x3

0
dx2

∫ x2

0
dx1 δ (x1) f (1)12 exp

( 5

∑
i< j

si j

2
G(δi j

τ

2+xi j)
)

(22)

Ĥ14
123|45(si j,q) =

( 5

∏
l=3

∫ 1

0
dxl

)∫ x3

0
dx2

∫ x2

0
dx1 δ (x1) f (1)14 exp

( 5

∑
i< j

si j

2
G(δi j

τ

2+xi j)
)
,

(23)

where δ12 = δ13 = δ23 = δ45 = 0 and δi j = 1 if i= 1,2,3 and j = 4,5. The analogous
non-planar integral with f (1)45 in the place of f (1)12 and f (1)14 vanishes, because the

integration measure is symmetric in 4,5 while f (1)45 =− f (1)54 ,

( 5

∏
l=3

∫ 1

0
dxl

)∫ x3

0
dx2

∫ x2

0
dx1 δ (x1) f (1)45 exp

( 5

∑
i< j

si j

2
G(δi j

τ

2 + xi j)
)
= 0 . (24)
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Note that there are five independent Mandelstam variables for five massless parti-
cles, for example s12,s23,s34,s45,s51,

5

∑
j=1

k j = 0 ⇒ s13 = s45− s12− s23 and cyc(1,2,3,4,5) . (25)

Similarly, the non-planar sector with λ = 1,2,3,4|5 admits three topologies of
permutation-inequivalent integrals: with insertions f (1)12 , f (1)13 and f (1)45 beyond the
Koba–Nielsen-factor, respectively.

2.4 Higher-point amplitudes

Starting from six external states, the correlators Kn no longer boil down to tree-
level amplitudes Atree

SYM(. . .) in (super-)Yang–Mills theory. Instead, one finds a more
general class of kinematic factors, see refs. [26, 27] for their precise form and the
accompanying functions of the punctures at six points.

3 Mathematical tools/objects

Employing the form of the open-string one-loop propagator in eq. (9) and expand-
ing the exponentials of the propagators in powers of α ′ (cf. eq. (10)), one finds all
integrals in the previous section to boil down to iterated integrals on the elliptic
curve. The integration kernels f (1)i j in eq. (17) and their higher-weight generaliza-
tions are canonical differentials on the elliptic curve that can be generated by a
non-holomorphic extension of the Eisenstein–Kronecker series [1, 28]

Ω(z,α,τ) = exp
(

2πiα
Imz
Imτ

)
θ ′1(0,τ)θ1(z+α,τ)

θ1(z,τ)θ1(α,τ)
=

∞

∑
n=0

α
n−1 f (n)(z,τ) . (26)

The expansion in the second equality yields doubly-periodic functions

f (n)(z,τ) = f (n)(z+1,τ) = f (n)(z+τ,τ) , f (n)(−z,τ) = (−1)n f (n)(z,τ) , (27)

for example f (0) = 1 and f (1)(z,τ) = ∂z logθ1(z,τ)+2πi Imz
Imτ

. Equation (17) arises

from the shorthand f (n)i j = f (n)(zi − z j,τ). The Fay relations of the Eisenstein–
Kronecker series [1, 29]

Ω(z1,α1,τ)Ω(z2,α2,τ)=Ω(z1,α1+α2,τ)Ω(z2−z1,α2,τ)+(z1,α1↔z2,α2) (28)

imply the following component relations when Laurent expanded in the bookkeep-
ing variables αi [4]:
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f (n)i j f (m)
jl =− f (m+n)

il +
n

∑
k=0

(−1)k
(

m−1+ k
k

)
f (n−k)
il f (m+k)

jl

+
m

∑
k=0

(−1)k
(

n−1+ k
k

)
f (m−k)
il f (n+k)

i j . (29)

As already noted for the Green function after eq. (14), all functions considered in
these proceedings are functions of the modular parameter τ , which we will suppress
here and below. Using the integration kernels f (n)(z) and the following definition of
elliptic iterated integrals3 with Γ( ;z) = 1,

Γ
(n1 n2 ... n`

b1 b2 ... b` ;z
)
=
∫ z

0
dt f (n1)(t−b1) Γ

(n2 ... n`
b2 ... b` ; t

)
, z ∈ [0,1] , (30)

one can solve the integrals over the punctures z j in one-loop open-superstring am-
plitudes order by order in α ′. In particular, it will be explained in detail in section 4
how the mathematical tools of this section yield a recursive and algorithmic proce-
dure to expand the four-point integrals eq. (14) to any desired order in α ′.

Allowing for rational values si and ri in the fundamental elliptic domain only,
twists bi = si + riτ with ri,si ∈ [0,1) lead to the notion of twisted elliptic multiple
zeta values or teMZVs [6]:

ω
(n1, n2, ..., n`

b1, b2, ..., b`

)
=

∫
0≤zi≤zi+1≤1

f (n1)(z1−b1)dz1 f (n2)(z2−b2)dz2 . . . f (n`)(z`−b`)dz`

= Γ

(
n` n`−1 ... n1
b` b`−1 ... b1

;1
)
. (31)

If there are no twists, that is, bi = 0 ∀ i, one obtains untwisted elliptic multiple zeta
values or eMZVs, for which a simplified notation is used [4, 5]:

ω(n1,n2, . . . ,n`) = Γ
(n` ... n2 n1

0 ... 0 0 ;1
)
= Γ(n`, . . . ,n2,n1;1) . (32)

For eMZVs and teMZVs defined in eqs. (31) and (32), the quantities w = ∑
`
i=1 ni,

and the number ` of integrations in are referred to as weight and length of the elliptic
iterated integral and the corresponding (t)eMZV, respectively.

In view of the simple pole of f (1)(z,τ) at z = 0,1, eMZVs with entries n1 = 1
or n` = 1 suffer from endpoint divergences, whose regularization was discussed
in ref. [4]. Similarly, a regularization scheme for the divergences caused by twists
b ∈ R in eq. (31) can be found in ref. [6].

3 The iterated integrals in eq. (30) are not homotopy invariant. Still, one can find a homotopy-
invariant completion for each Γ

(n1 n2 ... n`
b1 b2 ... b` ;z

)
from the generating series in ref. [1] (see also sub-

section 3.1 of ref. [4]).
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3.1 Elliptic multiple zeta values in terms of iterated Eisenstein
integrals

While teMZVs can be represented as iterated integrals over the positions zi of vertex
operators, the analytically favorable way is to convert them to iterated integrals in
the modular parameters τ . The main reason is, that the integration kernels appearing
in this setting are very well-known objects: holomorphic Eisenstein series for con-
gruence subgroups of SL2(Z) of various levels M. For level 1, iterated τ-integrals
over Eisenstein series do not satisfy any relations except for shuffle [30], hence,
representing these (untwisted) eMZVs in terms of iterated Eisenstein integrals au-
tomatically exposes all their relations over the rational numbers. For levels M > 1,
however, the Eisenstein series are not independent, when evaluated at rational points
of the lattice. These relations have been investigated and discussed in ref. [10] and
allow to relate different iterated integrals, even between different levels M.

There does exist a straightforward method for converting iterated z-integrals un-
derlying (t)eMZVs to iterated Eisenstein integrals E0 over Eisenstein series [2,5,6]:
since the resulting “number” is still going to be a function of the modular param-
eter τ , one can conveniently take a derivative with respect to τ . Let us make this
construction precise in the next paragraphs.

Given a teMZV of the form (31), let us take all of the twists bi from a rational lat-
tice ΛM =

{ r
M +τ

s
M : r,s = 0,1,2, . . . ,M−1

}
within the elliptic curve characterized

by an integer level M ∈ N. The derivative in τ of the teMZV is most conveniently
expressed in terms of functions4

h(n)(bi,τ) = (n−1) f (n)(bi,τ) , (33)

evaluated at lattice points bi ∈ ΛM , that is, Eisenstein series for congruence sub-
groups of SL2(Z) [6]:

2πi∂τ ω
(n1, ..., n`

b1, ..., b`

)
= h(n`+1)(−b`)ω

(
n1, ..., n`−1
b1, ..., b`−1

)
−h(n1+1)(−b1)ω

(n2, ..., n`
b2, ..., b`

)
+

`

∑
i=2

[
θni≥1

ni−1+1

∑
k=0

(
ni + k−1

k

)
h(ni−1−k+1)(bi−bi−1)ω

(
n1, ..., ni−2, ni+k, ni+1, ..., n`
b1, ..., bi−2, bi, bi+1, ..., b`

)
−θni−1≥1

ni+1

∑
k=0

(
ni−1 + k−1

k

)
h(ni−k+1)(bi−1−bi)ω

(
n1, ..., ni−2, ni−1+k, ni+1, ..., n`
b1, ..., bi−2, bi−1, bi+1, ..., b`

)
+(−1)ni+1

θni−1≥1θni≥1h(ni−1+ni+1)(bi−bi−1)ω

(
n1, ..., ni−2, 0, ni+1, ..., n`
b1, ..., bi−2, 0, bi+1, ..., b`

)]
.

(34)

4 Note that the normalization conventions of the functions h(n)(b,τ) in eq. (33) and ref. [6] differ
from the definition of the Eisenstein series h(n)M,r,s = f (n)( r

M + s
M τ,τ) for congruence subgroups of

SL2(Z) in ref. [10].
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We have introduced θn≥1 = 1−δn,0 for non-negative n, indicating that ni = 0 cause
certain terms in the last three lines to vanish. For teMZVs of length ` > 1 on the
left-hand side of eq. (34), each teMZV on the right-hand side has lower length `−1.
Hence, eq. (34) allows to recursively convert teMZVs to iterated integrals over the
functions h(k)(b,τ), terminating with a vanishing right-hand side for ` = 1. Upon
evaluation at fixed lattice points bi ∈ ΛM , the functions h(k)(b,τ) are holomorphic
in the modular parameter τ . For any k > 2, they can be conveniently represented as
a lattice sum

h(k)
( r

M
+ τ

s
M
,τ
)
= (k−1) ∑

(m,n)6=(0,0)

e2πi r m−sn
M

(n+mτ)k . (35)

In order to render the corresponding expression finite for k = 2, the summation
prescription has to be modified. Alternatively, level-M Eisenstein series have series
expansions in q1/M [6], for example one finds

h(4)
(

τ

2
,τ
)
=

ζ4

4

(
7−240q1/2−240q−6720q3/2−240q2−30240q5/2 + · · ·

)
. (36)

For r = s = 0, one recovers the usual holomorphic Eisenstein series (cf. eq. (35))

h(k)(0,τ)
1− k

= Gk(τ) = ∑
(m,n)6=(0,0)

1
(n+mτ)k , k ≥ 3 . (37)

Correspondingly, eq. (34) reduces to the differential equation for eMZVs stated in
eq. (2.47) of ref. [5]. Nicely, the situation k = 2 in the equation above does not occur,
when considering the τ-derivative eq. (34) of convergent eMZVs.

Considering the differential equation (34) and the identification (37), one can
finally rewrite every eMZV in terms of iterated integrals of Eisenstein series [5]:

E0(k1,k2, . . . ,kr;q) :=−
∫ q

0

dqr

qr

G0
kr
(qr)

(2πi)kr
E0(k1,k2, . . . ,kr−1;qr) (38)

= (−1)r
∫

0≤q1≤q2≤...≤qr≤q

dq1

q1
· · · dqr

qr

G0
k1
(q1)

(2πi)k1
· · ·

G0
kr
(qr)

(2πi)kr
.

The recursion starts with E0(;τ) = 1, and the non-constant parts of Eisenstein series
are defined as

G0
2n(τ) = G2n(τ)−2ζ 2n , G0(τ) = G0

0(τ) =−1 (39)

with n ∈N. For iterated integrals E0(k1,k2, . . . ,kr;q) in eq. (38), the number of non-
zero entries (k j 6= 0) is called the depth of the iterated Eisenstein integral.

The iterated Eisenstein integrals E0(k1, . . . ,kr;q) with k1 6= 0 are nicely conver-
gent and do not need to be regularized. Even more, the conversion of untwisted
eMZVs to iterated Eisenstein integrals provides an easy way to identify their rela-
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tions [5, 30, 31]. Many of such eMZV relations are available in digital form [32]
similar to the datamine of multiple zeta values [33].

In the same way as one can rewrite untwisted eMZVs as iterated integrals over
the Eisenstein series eq. (37), one can rewrite teMZVs as iterated integrals over the
level-M Eisenstein series defined in eq. (36). In contrast to the situation for usual
holomorphic Eisenstein series, there are several linear relations between level-M
Eisenstein series, which are discussed in ref. [10] and which need to taken into
account when deriving functions relations in general. In the realm of string ampli-
tudes discussed in the next subsection, we will however encounter only one partic-
ular Eisenstein series at level-2, which does not require these additional relations in
order to reach a canonical representation.

3.2 Eisenstein series of level 2 in the string context

Although the differential equation (34) is applicable to Eisenstein series evalu-
ated at points of any sublattice ΛM , let us focus on the lattice Λ2 suitable for
string amplitudes. As will be elaborated in section 4, the parametrization of the
cylinder worldsheet in figure 2 gives rise to teMZVs with twists b ∈ {0, τ/2} in
the non-planar amplitudes. Hence, the differential equation (34) allows to express
the α ′-expansion in terms of iterated Eisenstein integrals involving h(k)

(
τ

2 ,τ
)

and
h(k) (0,τ) = (1− k)Gk(τ).

When expressing the teMZVs from the non-planar integrals in terms of a basis
of iterated Eisenstein integrals, the contributions from h(k)

(
τ

2 ,τ
)

turn out to cancel.
In other words, even for the non-planar integrals I12|34 and I123|4 of eq. (14), the α ′-
expansions shown in the next section are expressible in terms of untwisted eMZVs
or iterated integrals over Gk(τ) exclusively. In spite of the cancellation of all non-
trivial twists, the representation of intermediate results in terms of Eisenstein series
for congruence subgroups of SL2(Z) has been indispensable to attain a canonical
form for all contributions.

As an example for the τ-derivative in eq. (34), let us take the teMZVs

2πi
∂

∂τ
ω

(
0, 1, 1
0, τ/2, τ/2

)
= h(2)

(
τ

2
,τ
)

ω

(
0, 1
0, τ/2

)
−ω

(
2, 1

τ/2, τ/2

)
2πi

∂

∂τ
ω

(
0, 1
0, τ/2

)
= h(2)

(
τ

2
,τ
)
−ζ2 . (40)

Since intermediate steps in the expansion of I123|4 and I12|34 turn out to involve

the rigid combination 2ω

(
0, 1, 1
0, τ/2, τ/2

)
−ω

(
0, 1
0, τ/2

)2
, the contribution of h(2)

(
τ

2 ,τ
)

in

eq. (40) cancels. Moreover, the relation 2ω

(
0, 1, 1
0, τ/2, τ/2

)
−ω

(
0, 1
0, τ/2

)2
=ω(0,0,2)+ ζ2

3
can be checked by taking higher τ-derivatives of the left-hand side.

Similarly, the τ-derivative eq. (34) and the decomposition described in the previ-
ous subsection yield
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ω(0,0,2) =−ζ2

3
−6E0(4,0;τ)

ω(0,1,0,0) =
3ζ3

4π2 −
9

2π2 E0(4,0,0;τ) (41)

ω(0,3,0,0) = 180E0(6,0,0;τ) .

The terms− ζ2
3 and 3ζ3

4π2 at the order of q0 exemplify that integration constants have to
be taken into account when expressing teMZVs as integrals over their τ-derivatives
eq. (34). For the twists b ∈ {0, τ/2} of our interest, the integration constants are
rational combinations of (2πi)−1 and multiple zeta values that can be determined
by the techniques in section 2.3 of [5] and section 3.2 of [6].

4 Four-point results in different languages

In this section, we apply the mathematical framework of section 3 to the α ′-expansion
of the four-point cylinder integrals eq. (14). In order to relate the Green function
eq. (11) to the constituents of teMZVs, we use momentum conservation eq. (15) to
rewrite the target integrals5 as

I1234(si j,q) =
∫ 1

0
dx4

∫ x4

0
dx3

∫ x3

0
dx2

∫ x2

0
dx1 δ (x1)exp

( 4

∑
i< j

si jP(xi j,q)
)

I123|4(si j,q) =
( 4

∏
l=1

∫ 1

0
dxl

)
δ (x1)exp

( 3

∑
i< j

si jP(xi j,q)+
3

∑
j=1

s j4Q(xi j,q)
)

(42)

I12|34(si j,q) = q
s12
4

( 4

∏
l=1

∫ 1

0
dxl

)
δ (x1)exp

(
∑
(i, j)=

(1,2),(3,4)

si jP(xi j,q)+ ∑
i=1,2
j=3,4

si jQ(xi j,q)
)
,

with the expressions

G(z,τ), Imz = 0  P(x,q) = Γ
(

1
0 ;x
)
−ω(1,0) (43)

G(z,τ), Imz =
Imτ

2
 Q(x,q) = Γ

(
1

τ/2 ;x
)
−ω

(
1, 0

τ/2, 0

)
, (44)

where x = Rez, and the Green functions P(x,q) and Q(x,q) connect punctures on
the same and on different cylinder boundaries, respectively. Both summands Γ

(
1
0 ;x
)

and ω(1,0) in eq. (43) individually represent divergent integrals whose regulariza-
tion is discussed in detail in section 4.2 of [6]. As visualized in figure 2, the twists
τ/2 in eq. (44) stem from the displacement of the two cylinder boundaries in our

5 The derivation of eq. (42) from eq. (14) is elaborated on in ref. [6]. The only difference is that the
present definitions of P(x,q) and Q(x,q) in eqs. (43) and (44) deviate from those in the reference
by an additive constant. Instead, the objects P(x,q) and Q(x,q) defined in eqs. (43) and (44) match
the expressions in ref. [11] up to an overall minus sign.
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parametrization through a rectangular torus. Accordingly, the factor of qs12/4 in the
above expression for the non-planar contribution I12|34(si j,q) can be traced back to
the term ∼ (Imz)2 in the Green function eq. (11).

When inserting the differences xi j = xi− x j of the cylinder punctures into the
Green functions P(x,q) and Q(x,q), the following representations turn out to be
particularly convenient for the α ′-expansion of eq. (42)

P(xi j,q) = Γ

(
1
x j ;xi

)
+Γ

(
1
0 ;x j

)
−ω(1,0) , 1 < i < j (45)

Q(xi j,q) = Γ

(
1

x j+τ/2 ;xi

)
+Γ

(
1

τ/2 ;x j

)
−ω

(
1, 0

τ/2, 0

)
, 1 < i < j . (46)

4.1 The proof of concept

The α ′-expansion of the open-string integrals eq. (42) at fixed6 τ can be obtained
by Taylor-expanding the exponentials in the integrand w.r.t. si j and employing the
representations of the Green functions in eq. (43) to eq. (46). The order-by-order
integration can be reduced to the definitions of elliptic iterated integrals and teMZVs
in section 3 as soon as the following technical subtleties have been settled:

• The recursive definition eq. (30) of elliptic iterated integrals cannot be used
for integrands of the form dt f (n)(t−b1) f (m)(t−b2) with multiple occurrence
of the integration variable t as arguments of different integration kernels in
eq. (26). This situation can be remedied by using the Fay relation (29), which
can be viewed as the elliptic analogue of partial-fraction relations 1

(t−b1)(t−b2)
+

cyc(t,b1,b2) = 0. Then, each term on the right-hand side of the Fay relation can
be recursively integrated via eq. (30).

• The integration variable of eq. (30) is not allowed to show up in the shifts bi of
the iterated integral Γ in the integrand. Therefore one has to derive functional
relations between different iterated integrals. The main mechanism to derive re-
lations like

Γ

(
3,1
0,z ;z

)
=−4Γ

(
0,4
0,0 ;z

)
+Γ

(
1,3
0,0 ;z

)
−Γ

(
2,2
0,0 ;z

)
−Γ

(
4,0
0,0 ;z

)
(47)

consists of writing Γ as an integral over its own z-derivative and using again Fay
relations on the integration kernels f (n) before integrating back [4]. The need
for relations like eq. (47) arises less frequently if the representations eqs. (43)
and (44) are used for propagators at argument x1 j with j 6= 1 and eqs. (45)
and (46) for propagators at argument xi j with 1 < i < j.

6 Given that the α ′-expansions in this work are performed at fixed τ , our results do not expose the
branch cuts of the loop amplitudes which result from the integral over q in eqs. (13) and (19). In
the terminology of the closed-string literature [12], the analysis of these proceedings is restricted
to the analytic dependence of the one-loop amplitudes on the kinematic invariants.
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• The association of 1 < i < j with eqs. (45) and (46) is adapted to an integration
region where 0 < x2 < x3 < x4 < 1. The non-planar integrals I123|4 and I12|34,
however, additionally involve situations where x j > x j+1. Still, the cubical in-
tegration region x j=2,3,4 ∈ (0,1) of I123|4 and I12|34 can be decomposed into six
simplices 0 < xi < x j < xk < 1 with some permutations (i, j,k) of (2,3,4). Each
of these simplicial contributions in turn can then be reduced to the situation where
0 < x2 < x3 < x4 < 1 by simultaneous relabeling of the integration variables and
the Mandelstam variables si j.

Further details and examples of this rather technical procedure can be found in
refs. [4, 6, 11]. For the purpose of these proceedings, let us just note that all inte-
grals resulting from the α ′-expansion of the integrand in eq. (42) can be treated in
this way; thus integration using eq. (30) is possible.

Since the upper limit for the outermost integration in each term of eq. (42) is
x j = 1, the elliptic iterated integrals in the α ′-expansions ultimately boil down to
teMZVs eq. (31). Once the punctures x2,x3,x4 are all integrated out, the leftover
shifts b j can take the values 0 and τ/2. In the planar case I1234 with all integrations
on the same boundary, there are no shifts; thus the α ′-expansions are manifestly
expressible in terms of untwisted eMZVs eq. (32).

Note that the representation of the Green function used in the first discussion of
the planar case [4] did not involve the subtraction of ω(1,0) in eqs. (43) and (45).
As a virtue of the Green function P(xi j,q) including −ω(1,0), divergent eMZVs
ω(1, . . .) or ω(. . . ,1) (cf. the discussion prior to section 3.1) automatically cancel
from the α ′-expansion along with each monomial in the si j. In other words, short-
distance finiteness of the integrals is manifest term by term7 without further use of
momentum conservation.

Finally, the expansion of the non-planar integrals benefits from the particular
choice of Green functions in eqs. (43) and (44): The vanishing of

∫ 1
0 dxP(x,q) and∫ 1

0 dxQ(x,q) [11] systematically bypasses various spurious terms, which appear in
intermediate steps when using the representation of Green functions from ref. [6].

4.2 Plain results

Following the steps outlined in the previous section, the α ′-expansion of the integral
I1234 for the planar four-point cylinder amplitude eq. (13) can be brought into the
following form [4]

I1234(si j,q) =
1
6
+ 2ω(0,1,0,0)s13

+ 2ω(0,1,1,0,0)
(
s2

12 + s2
23
)
− 2ω(0,1,0,1,0)s12s23 (48)

7 For instance, the contributions s12P(x12,q) and s13P(x13,q) from the exponentials in the rep-
resentation eq. (42) of I1234(si j,q) integrate to ω(1,0,0,0)− 1

6 ω(1,0) = − 1
3 ω(0,1,0,0) and

ω(1,0,0,0)+ω(0,1,0,0)− 1
6 ω(1,0) = 2

3 ω(0,1,0,0), respectively.
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+ β5 (s3
12+2s2

12s23+2s12s2
23+s3

23) − β2,3 s12s23s13 +O(α ′4) ,

where we have used the following shorthands for the third order in α ′

β5 =
4
3
[
ω(0,0,1,0,0,2)+ω(0,1,1,0,1,0)−ω(2,0,1,0,0,0)−ζ2 ω(0,1,0,0)

]
β2,3 =

ζ3

12
+

8ζ2

3
ω(0,1,0,0)− 5

18
ω(0,3,0,0) . (49)

In the non-planar four-point integrals of eq. (13), the teMZVs obtained in interme-
diate steps are found to cancel by employing the canonical representation in terms
of iterated Eisenstein integrals. With two punctures on each boundary, the cancella-
tions of teMZVs in

q−
s12
4 I12|34(si j,q) = 1+ s2

12

(7ζ2

6
+2ω(0,0,2)

)
−2s13s23

(
ζ2

3
+ω(0,0,2)

)
(50)

−4ζ2ω(0,1,0,0)s3
12 + s12s13s23

(5
3

ω(0,3,0,0)+4ζ2ω(0,1,0,0)− ζ3

2

)
+O(α ′4)

are guaranteed to extend to all orders in α ′ by the factorization argument in sec-
tion 4.3.5 of [6]. The other non-planar topology with three punctures on the same
boundary exhibits the same kinds of cancellations [6]

I123|4(si j,q) = 1+(s2
12 + s12s23 + s2

23)
(7ζ2

6
+2ω(0,0,2)

)
(51)

− s12s23s13

(
4ζ2ω(0,1,0,0)− 5

3
ω(0,3,0,0)+

ζ3

2

)
+O(α ′4)

which might have an all-order explanation from the monodromy relations [34–36]
among one-loop open-string amplitudes. The above results have been checked to
reproduce the degeneration limits q→ 0 known from the literature, i.e. the zero’th
order in the q-expansions of I1234(si j,q), I123|4(si j,q) and q−

s12
4 I12|34(si j,q) agrees

with the expressions in refs. [37] and [35], respectively.

4.3 Results in terms of iterated Eisenstein integrals

In this section, we rewrite the above α ′-expansions in a canonical form by convert-
ing the eMZVs to a basis of iterated Eisenstein integrals (38). The planar integral
eq. (48) then takes the form

I1234(si j,q) =
1
6
+

3s13

2π2

(
ζ3−6E0(4,0,0;q)

)
+(s2

12+s12s23+s2
23)
(

ζ2

6
−2E0(4,0;q)

)
+

1
π2 (s

2
12 +4s12s23 + s2

23)
(

60E0(6,0,0,0;q)− ζ4

2

)
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+ s12s13s23

(
2E0(4,0,0;q)+50E0(6,0,0;q)− 5ζ3

12

)
(52)

+
1

π2 (s
3
12+2s2

12s23+2s12s2
23+s3

23)
(

216E0(4,0,4,0,0;q)+648E0(4,4,0,0,0;q)

+
3
5
E0(4,0,0,0,0;q)−108E0(4,0;q)E0(4,0,0;q)+2016E0(8,0,0,0,0;q)

+18E0(4,0;q)ζ3−
5ζ5

2

)
+O(α ′4) ,

where the third order in α ′ exhibits integrals E0(4,4,0,0,0;q) and E0(4,0,4,0,0;q)
of depth two. The non-planar integral eq. (50) in turn contains shorter eMZVs and
iterated Eisenstein integrals at the orders under consideration, cf. eq. (41),

q−
s12
4 I12|34(si j,q) = 1+ s2

12

(
ζ2

2
−12E0(4,0;q)

)
+12s13s23E0(4,0;q) (53)

+ s3
12

(
3E0(4,0,0;q)− ζ3

2

)
+ s12s13s23

(
300E0(6,0,0;q)−3E0(4,0,0;q)

)
+O(α ′4) ,

and a similar structure can be found for eq. (51):

I123|4(si j,q) = 1+(s2
12 + s12s23 + s2

23)
(

ζ2

2
−12E0(4,0;q)

)
(54)

+ s12s23s13

(
300E0(6,0,0;q)+3E0(4,0,0;q)−ζ3

)
+O(α ′4) .

Note that the α ′-expansions of both non-planar integrals q−
s12
4 I12|34(si j,q) and

I123|4(si j,q) take a form very similar to the symmetrized version of the planar in-
tegral eq. (52):

I1234(si j,q)+perm(2,3,4) = 1+(s2
12 + s12s23 + s2

23)
(

ζ2−12E0(4,0;q)
)

(55)

+ s12s23s13

(
12E0(4,0,0;q)+300E0(6,0,0;q)− 5ζ3

2

)
+O(α ′4) .

In fact, taking the differences between eq. (55) and eq. (53) or (54), they are
proportional to ζ2, which might become visible only after using relations like
ζ2 ω(0,1,0,0) = ζ3

8 −
3
4E0(4,0,0). This observation is related to the expectation on

the corresponding closed-string integral [12, 13] to follow from open-string quanti-
ties under a suitably chosen single-valued projection: The agreement of eq. (55) and
eq. (53) or (54) modulo ζ2 is argued in ref. [11] to pave the way towards a tentative
single-valued projection for eMZVs.

While there is no bottleneck in obtaining higher orders in α ′ from the same meth-
ods, it would be desirable to construct cylinder integrals directly from the elliptic as-
sociators [38]. This would generalize the representations of disk integrals in terms
of the Drinfeld associator [39] and should explain the patterns of iterated Eisenstein
integrals in the above equations.
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5 Five-point results in different languages

In this section, we discuss the applicability of the setup of teMZVs to string am-
plitudes of multiplicities higher than four. The main novelties for maximally super-
symmetric amplitudes at n≥ 5 points are kinematic poles of the worldsheet integrals
and higher-dimensional bases of tensor structures for the external polarizations. The
appearance of both of these features are captured by the subsequent discussion of
five-point one-loop amplitudes of the open superstring.

We will focus on the α ′-expansion of the prototype integrals in eq. (20) to (23)
which are more conveniently written in terms of the propagators in eq. (43) to (46),

H12
12345(si j,q) =

∫ 1

0
dx5

( 4

∏
l=1

∫ xl+1

0
dxl

)
δ (x1) f (1)12 exp

( 5

∑
i< j

si jP(xi j)
)

(56)

Ĥ13
12345(si j,q) =

∫ 1

0
dx5

( 4

∏
l=1

∫ xl+1

0
dxl

)
δ (x1) f (1)13 exp

( 5

∑
i< j

si jP(xi j)
)

(57)

H12
123|45(si j,q) = q

s45
4

( 5

∏
l=3

∫ 1

0
dxl

)∫ x3

0
dx2

∫ x2

0
dx1 δ (x1) f (1)12 (58)

× exp
( 3

∑
i< j

si jP(xi j)+ s45P(x45)+ ∑
i=1,2,3
j=4,5

si jQ(xi j)
)

Ĥ14
123|45(si j,q) = q

s45
4

( 5

∏
l=3

∫ 1

0
dxl

)∫ x3

0
dx2

∫ x2

0
dx1 δ (x1) f (1)14 (59)

× exp
( 3

∑
i< j

si jP(xi j)+ s45P(x45)+ ∑
i=1,2,3
j=4,5

si jQ(xi j)
)
.

5.1 Kinematic poles

When reproducing field-theory amplitudes from the α ′→ 0 limit of string theories,
Feynman propagators arise from the boundaries of the moduli spaces. For instance,
the s-channel pole in a four-point open-string tree amplitude arises from the region
in the disk integral ∫ 1

0

dz2

z2
zs12

2 (1− z2)
s23 =

1
s12

+O(α ′) , (60)

where the puncture z2 collides with z1 = 0. Since the emergence of kinematic poles
s−1

i j is solely dictated by local properties of the worldsheet and the short-distance be-
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havior of the Green function, the pole structure of loop amplitudes can be analyzed
by the same methods as their tree-level counterparts8.

In contrast to the one-loop four-point integrands, the prototype integrals at five
points in eq. (56) to (59) exhibit additional factors of f (1)i j with

f (1)i j =
1

zi− z j
+O(|zi− z j|) (61)

which modify the singularity structure at the boundary of the moduli space. In par-
ticular, the worldsheet singularities of f (1)12 es12P(x12) translate into kinematic poles
∼ s−1

12 in the five-point one-loop integrals eqs. (56) and (58) along the lines of the
tree-level mechanism in eq. (60). As a convenient way of capturing the α ′-expansion
of such singular integrals, we split the integrand of H12

12345 in eq. (56) as

f (1)12 e∑
5
i< j si jP(xi j) = f (1)12 es12P(x2)

[
Φ(x2,x3,x4,x5)−Φ(0,x3,x4,x5)+Φ(0,x3,x4,x5)

]
Φ(x2,x3,x4,x5) = exp

( 5

∑
l=3

s1lP(xl)+
5

∑
2≤i< j

si jP(xi j)
)
, (62)

where we remind the reader that we fixed x1 = 0. Then, for the last term of the
first line, the integral over x2 becomes elementary by recognizing f (1)12 es12P(x2) =

− 1
s12

∂

∂x2
es12P(x2) and leads to the following singular part of H12

12345:

∫ 1

0
dx5

( 4

∏
l=1

∫ xl+1

0
dxl

)
δ (x1) f (1)12 es12P(x2) Φ(0,x3,x4,x5) (63)

=− 1
s12

∫ 1

0
dx5

∫ x5

0
dx4

∫ x4

0
dx3 exp

(
s12P(x3)+

5

∑
l=3

(s1l+s2l)P(xl)+
5

∑
3≤i< j

si jP(xi j)
)
.

The right-hand side of the equation above can in turn be identified with the planar
four-point integral in eq. (14) after relabeling the Mandelstam invariants as

χ :
{ s12→ s123 , s13→ s14+s24 , s14→ s15+s25

s23→ s34 , s24→ s35 , s34→ s45
(64)

with s123 = s12+s13+s23. We have assumed s12 to have a positive real part in dis-
carding the boundary term es12P(x2)

∣∣
x2=0 in eq. (63) which exhibits the same short-

distance behavior xs12
2 as seen in the tree-level integrand eq. (60). Hence, the integral

eq. (20) can be split into a pole part and a regular part according to

H12
12345 = H12,reg

12345 −
I1234(χ(si j),q)

s12
(65)

8 See [40, 41] for two related approaches to treat the poles of n-point open-string tree amplitudes.



One-loop string scattering amplitudes as iterated Eisenstein integrals 21

H12,reg
12345 =

∫ 1

0
dx5

( 4

∏
l=2

∫ xl+1

0
dxl

)
f (1)(x2)es12P(x2)

[
Φ(0,x3,x4,x5)−Φ(x2,x3,x4,x5)

]
.

In reconstructing the α ′-expansion of the polar part from a four-point computation,
the Mandelstam invariants of I1234 have to be transformed according to eq. (64)
instead of using four-point momentum conservation eq. (15). This is the reason for
obtaining

I1234(χ(si j),q) =
1
6
+ω(0,1,0,0)(s12−2s34−2s45) (66)

+ω(0,1,1,0,0)(s2
12−2s12s34+2s2

34+2s2
45)+ω(0,1,0,1,0)(s12−2s34)s45 +O(α ′3)

instead of eq. (48) after using five-point momentum conservation eq. (25). The non-
planar integral H12

123|45 with a kinematic pole defined in eq. (58) will be addressed
by a similar decomposition of the integrand as in eq. (62)

f (1)12 e∑
5
i< j si jP(xi j) = f (1)12 es12P(x2)

[
Ψ(x2,x3,x4,x5)−Ψ(0,x3,x4,x5)+Ψ(0,x3,x4,x5)

]
Ψ(x2,x3,x4,x5) = exp

(
s13P(x3)+ ∑

(i, j)=
(2,3),(4,5)

si jP(xi j)+ ∑
j=4,5

s1 jQ(x j)+∑
i=2,3
j=4,5

si jQ(xi j)
)
.

(67)

Again, one can find a primitive w.r.t. x2 for the last term in the first line and arrive at
a decomposition analogous to eq. (65)

H12
123|45 = H12,reg

123|45−
I12|34(χ(si j),q)

s12
(68)

H12,reg
123|45 = q

s45
4

( 5

∏
l=3

∫ 1

0
dxl

)∫ x3

0
dx2 f (1)(x2)es12P(x2)

[
Ψ(0,x3,x4,x5)−Ψ(x2,x3,x4,x5)

]
,

with the same mapping eq. (64) of the Mandelstam invariants that governed the
planar counterpart H12

12345. The function I12|34(χ(si j),q) of five-particle Mandelstam
invariants along with s−1

12 is still expressible in terms of untwisted eMZVs,

I12|34(χ(si j),q) = q
s45
4

{
1+ s2

45

(
ω(0,0,2)+

5ζ2

6

)
(69)

+
1
2
[
(s14 + s24)

2 +(s15 + s25)
2 + s2

34 + s2
35
](

ω(0,0,2)+
ζ2

3

)
+O(α ′3)

}
,

see eq. (53) for the analogous four-point expansion.
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5.2 The regular parts

For the regular parts H12,reg
12345 and H12,reg

123|45 of the five-point integrals over f (1)12 defined
in eqs. (65) and (68), the integrands

Φ(0,x3,x4,x5)−Φ(x2,x3,x4,x5) =−
5

∑
j=3

s2 j Γ

(
1
x j ;x2

)
+O(α ′2)

Ψ(0,x3,x4,x5)−Ψ(x2,x3,x4,x5) =−s23 Γ
( 1

x3
;x2
)
− s24 Γ

(
1

x4+τ/2 ;x2

)
(70)

− s25 Γ

(
1

x5+τ/2 ;x2

)
+O(α ′2)

manifestly vanish as x2 → 0. Hence, they cancel the singularity of the integrands
f (1)(x2) in eqs. (65) and (68), and the integrations over x3,x4,x5 yield convergent
eMZVs at all orders, starting with9

H12,reg
12345 = (s23− s25)

[
ω(0,1,0,1,0)+2ω(0,1,1,0,0)

]
+O(α ′2) (71)

H12,reg
123|45 = O(α ′2) . (72)

The leading three orders in the low-energy expansion of the planar integral H12
12345

can then be assembled by inserting eqs. (66) and (71) into eq. (65). Likewise, the
non-planar integral H12

123|45 follows from plugging eqs. (69) and (72) into eq. (68).
The kinematic poles of the integrals H12

12345 and H12
123|45 only arise because the

variables x1 and x2 of the worldsheet singularity f (1)12 ∼ x−1
12 are neighbors in the

integration domain 0 < x2 < x3 < x4 < x5 < 1. In contrast, the integrals Ĥ13
12345 and

Ĥ14
123|45 in eqs. (57) and (59), do not acquire any kinematic pole in this way. Ac-

cordingly, Taylor expanding the exponentials in the integrand automatically yields
convergent eMZVs order by order in α ′ upon integration over x2,x3,x4,x5, e.g.

Ĥ13
12345 =−ω(0,1,0,0)+(s12 + s23 + s45)ω(0,1,1,0,0) (73)

+(s12− s15 + s23− s34− s45)ω(0,1,0,1,0)+O(α ′2)

Ĥ14
123|45 = q

s45
4

{
(s24− s34)

(
ω(0,0,2)+

ζ2

3

)
+O(α ′2)

}
. (74)

Note that to the orders considered, the α ′-expansions of the five-point integrals can
be easily confirmed to preserve the integration-by-parts relations

9 The convergent integrals leading to eq. (72) can be performed via rearrangements such as [4]
Γ
(

1 1
0 z ;z

)
=−2Γ

(
0 2
0 0 ;z

)
−Γ

(
2 0
0 0 ;z

)
−ζ2, which is yet another example from the class of identities

discussed around eq. (47). Note that the singular integration kernels f (1) manifestly drop out from
this identity.



One-loop string scattering amplitudes as iterated Eisenstein integrals 23

0 =
∫

D(λ )

5

∏
j=1

dz j
∂

∂ z2
δ (z1)

5

∏
i< j

exp
( si j

2 G(zi j)
)

(75)

=
∫

D(λ )

5

∏
j=1

dz j δ (z1)
[
s23 f (1)23 +s24 f (1)24 +s25 f (1)25 −s12 f (1)12

] 5

∏
i< j

exp
( si j

2 G(zi j)
)
.

Such relations are crucial for manifesting the gauge invariance of the string ampli-
tude. They do not depend on the planar or non-planar ordering λ in the integration
region D(λ ), cf. eq. (6). Each of the summands in eq. (75) is expressible as a rela-
beling of one of the prototype integrals in eq. (56) to (59). It does not require much
effort to show that non-planar integrals with a domain of the form D(1,2,3,4|5) can
be expanded using the same methods.

5.3 Putting everything together

Given the low-energy expansion of all the permutation-inequivalent prototype inte-
grals eq. (56) to (59), one can expand the five-point cylinder amplitude eq. (19) at
the level of the integrand w.r.t. q: The coefficients Iρ(2,3)

λ
(si j,q) of the independent

kinematic factors Atree
SYM(1,ρ(2,3),4,5) with permutation ρ ∈ S2 are linear combi-

nations of the H i j
λ

and Ĥ i j
λ

implicitly defined by combining eqs. (16) and (18) with
BCJ relations of the Atree

SYM.
Also the five-point tree amplitudes of the open superstring can be expanded in a

BCJ basis of (super-)Yang–Mills amplitudes [42]: When considering the two single-
trace orderings Atree

open(1,τ(2,3),4,5) of disk amplitudes, the relation to their field-
theory counterparts Atree

SYM(1,ρ(2,3),4,5) is encoded in 2× 2 matrices (Pw)τ
ρ and

(Mw)τ
ρ indexed by the permutations τ,ρ ∈ S2 [43],

Atree
open(1,τ(2,3),4,5) = ∑

ρ∈S2

(1+ζ2P2 +ζ3M3 +ζ
2
2 P4 +O(α ′5))τ

ρ

×Atree
SYM(1,ρ(2,3),4,5) . (76)

The entries of the 2× 2 matrices Pw and Mw are degree-w polynomials in si j with
rational coefficients, e.g.

P2 =
( s12s34− s34s45− s51s12 s13s24

s12s34 s13s24− s24s45− s51s13

)
, (77)

and analogous expressions for matrices at higher order in α ′ or multiplicity can be
downloaded from [44].

The same matrices P2,M3,P4 governing the low-energy expansion of tree ampli-
tudes eq. (76) can be found in the planar sector at one loop: It is convenient to focus
on the two choices λ = 1,2,3,4,5 and λ = 1,3,2,4,5 of the single-trace ordering
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which line up with the basis Atree
SYM(1,ρ(2,3),4,5) of kinematic factors in eq. (19).

Doing so, the α ′-expansions of the planar integrals H12
12345 and Ĥ13

12345 uplift the re-
lation eq. (76) between open-string and (super-)Yang–Mills tree-level amplitudes to
one loop

Acyl(1,τ(2,3),4,5) =
∫ 1

0

dq
q ∑

ρ∈S2

I1τ(23)45
ρ(si j,q)Atree

SYM(1,ρ(2,3),4,5) (78)

with the leading low-energy orders [4]

−I1τ(23)45
ρ(si j,q) =

1
6

P2 +
( 3ζ3

2π2 −
9E0(4,0,0;q)

π2

)
M3

+
(

π2

18
−5E0(4,0;q)+

150
π2 E0(6,0,0,0;q)

)
P4 (79)

+
(3

2
E0(4,0;q)− 225

π2 E0(6,0,0,0;q)
)

L4 +O(α ′5) .

At order α ′4, we encounter a new matrix L4 with entries

(L4)23
23 = s2

12s2
23 +2s2

12s23s24 + s2
12s2

24 +2s2
12s23s34 +2s12s13s23s34 +2s12s2

23s34

+2s2
12s24s34 + s12s13s24s34 +2s12s23s24s34 + s2

12s2
34 +2s12s13s2

34

+ s2
13s2

34 +2s12s23s2
34 +2s13s23s2

34 + s2
23s2

34 (80)

(L4)23
32 =−s13s24(3s12s23 + s13s23 + s2

23 +2s12s24 + s13s24 + s23s24

+3s12s34 +2s13s34 +3s23s34) (81)

and (L4)32
32 = (L4)23

23
∣∣
2↔3 as well as (L4)32

23 = (L4)23
32
∣∣
2↔3. The q-expansion

of its coefficient does not have any zero mode, consistent with the fact that the q0

order of eq. (79) has to match the α ′-derivative of the tree-level amplitude [37].
Cylinder diagrams as drawn in figure 1 can be interpreted not only as a one-loop

process involving open strings but also as a tree-level exchange of closed strings
[16]. In particular, the non-planar cylinder diagram gives rise to a propagator ∼ s−1

12
of gravitational states upon integration over q. Accordingly, the low-energy limit
of double-trace open-string amplitudes at one loop reproduces the corresponding
double-trace amplitudes in Einstein–Yang–Mills field theory [45]

Atree
EYM(1,2,3|4,5) = s24Atree

SYM(1,3,2,4,5)− s34Atree
SYM(1,3,2,4,5) . (82)

Indeed, the α ′-expansions of the non-planar integrals H12
123|45 & Ĥ14

123|45 give rise to

Acyl(1,2,3|4,5) =−
1
2

∫ 1

0

dq
q

q
s45
4

{
s45 Atree

EYM(1,2,3|4,5)

+
(

ζ2

2
−12E0(4,0;q)

)
s3

45 Atree
EYM(1,2,3|4,5) (83)

+ 12E0(4,0;q)
[

s34(s12s23s45+2s12s24s45+s45s2
34+s2

45s34+3s12s24s15)
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×Atree
SYM(1,2,3,4,5)− (2↔ 3)

]
+ O(α ′5)

}
and match the desired Einstein–Yang–Mills limit eq. (82) by means of the integral∫ 1

0 dq q
s45
4 −1 = 4

s45
at the leading order. It would be interesting to explore the higher-

order structure of the α ′-expansion at one loop, in particular, if it exhibits an echo
of the tree-level pattern of refs. [43, 46] under the motivic coaction.

6 Summary

In these proceedings, we investigate the appearance of eMZVs in one-loop ampli-
tudes of the open superstring. In reviewing earlier results on the planar [4] and non-
planar cylinder diagram [6], we streamline intermediate steps of the computations
provided in the references, thus allowing a more efficient calculation. We extend
their results in two directions: First, the treatment of kinematic poles in planar and
non-planar five-point integrals is carefully explained. Second, the final expressions
for the low-energy expansions at four and five points are cast into the language of
iterated Eisenstein integrals.
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