Syllabus for Linear Algebra II

Linjär algebra II

Syllabus

  • 5 credits
  • Course code: 1MA024
  • Education cycle: First cycle
  • Main field(s) of study and in-depth level: Mathematics G1F

    Explanation of codes

    The code indicates the education cycle and in-depth level of the course in relation to other courses within the same main field of study according to the requirements for general degrees:

    First cycle
    G1N: has only upper-secondary level entry requirements
    G1F: has less than 60 credits in first-cycle course/s as entry requirements
    G1E: contains specially designed degree project for Higher Education Diploma
    G2F: has at least 60 credits in first-cycle course/s as entry requirements
    G2E: has at least 60 credits in first-cycle course/s as entry requirements, contains degree project for Bachelor of Arts/Bachelor of Science
    GXX: in-depth level of the course cannot be classified.

    Second cycle
    A1N: has only first-cycle course/s as entry requirements
    A1F: has second-cycle course/s as entry requirements
    A1E: contains degree project for Master of Arts/Master of Science (60 credits)
    A2E: contains degree project for Master of Arts/Master of Science (120 credits)
    AXX: in-depth level of the course cannot be classified.

  • Grading system: Fail (U), Pass (3), Pass with credit (4), Pass with distinction (5)
  • Established: 2007-03-15
  • Established by:
  • Revised: 2019-02-19
  • Revised by: The Faculty Board of Science and Technology
  • Applies from: week 27, 2019
  • Entry requirements: Single Variable Calculus. Linear Algebra and Geometry I or Algebra and Geometry.
  • Responsible department: Department of Mathematics

Learning outcomes

On completion of the course the student shall be able to: 

  • be able to give an account of and use basic vector space concepts such as linear space, linear dependence, basis, dimension, linear transformation;
  • be able to give an account of and use basic concepts in the theory of finite dimensional Euclidean spaces;
  • be familiar with the concepts of eigenvalue, eigenspace and eigenvector and know how to compute these objects;
  • know the spectral theorem for symmetric operators and know how to diagonalise quadratic forms in ON-bases;
  • know how to solve a system of linear differential equations with constant coefficients;
  • be able to formulate important results and theorems covered by the course;
  • be able to use the theory, methods and techniques of the course to solve mathematical problems;

Content

Linear spaces: subspaces, linear span, linear dependence, basis, dimension, change of bases. Matrices: rank, column space and row space. Linear transformations: their matrix and its dependence on the bases, composition and inverse, range and nullspace, the dimension theorem. Euclidean spaces: inner product, the Cauchy-Schwarz inequality, orthogonality, ON-basis, orthogonalisation, orthogonal projection, isometry. Quadratic forms: diagonalisation. Spectral theory: eigenvalues, eigenvectors, eigenspaces, characteristic polynomial, diagonalisability, the spectral theorem, second degree surfaces. Systems of linear ordinary differential equations.

Instruction

Lectures and problem solving sessions. Test or written assignment.

Assessment

Written examination at the end of the course.

If there are special reasons for doing so, an examiner may make an exception from the method of assessment indicated and allow a student to be assessed by another method. An example of special reasons might be a certificate regarding special pedagogical support from the disability coordinator of the university.

Reading list

Reading list

Applies from: week 27, 2019

  • Anton, Howard; Rorres, Chris Elementary linear algebra : with supplemental applications /c Howard Anton, Chris Rorres

    11th. ed., International student version: John Wiley & Sons, cop. 2015

    Find in the library

    Mandatory