Syllabus for Materials Analysis

Materialanalys

Syllabus

  • 10 credits
  • Course code: 1TE013
  • Education cycle: Second cycle
  • Main field(s) of study and in-depth level: Technology A1N, Physics A1N, Chemistry A1N

    Explanation of codes

    The code indicates the education cycle and in-depth level of the course in relation to other courses within the same main field of study according to the requirements for general degrees:

    First cycle

    • G1N: has only upper-secondary level entry requirements
    • G1F: has less than 60 credits in first-cycle course/s as entry requirements
    • G1E: contains specially designed degree project for Higher Education Diploma
    • G2F: has at least 60 credits in first-cycle course/s as entry requirements
    • G2E: has at least 60 credits in first-cycle course/s as entry requirements, contains degree project for Bachelor of Arts/Bachelor of Science
    • GXX: in-depth level of the course cannot be classified

    Second cycle

    • A1N: has only first-cycle course/s as entry requirements
    • A1F: has second-cycle course/s as entry requirements
    • A1E: contains degree project for Master of Arts/Master of Science (60 credits)
    • A2E: contains degree project for Master of Arts/Master of Science (120 credits)
    • AXX: in-depth level of the course cannot be classified

  • Grading system: Fail (U), Pass (3), Pass with credit (4), Pass with distinction (5)
  • Established: 2010-03-16
  • Established by:
  • Revised: 2022-02-08
  • Revised by: The Faculty Board of Science and Technology
  • Applies from: Autumn 2022
  • Entry requirements:

    120 credits in Science and Technology, including Quantum fysics or Quantum mechanics and chemical bonding. Proficiency in English equivalent to the Swedish upper secondary course English 6.

  • Responsible department: Department of Materials Science and Engineering

Learning outcomes

The aim of the course is to introduce modern techniques for materials characterisation, particularly surface characterisation, that are used for both academic and industrial research and development.

On completion of the course, the student should be able to:

  • motivate and discuss choice of methods for imaging and analysis by comparing performance and judging usefulness of different methods for a given problem,
  • critically judge the choice of method and conclusions in scientific papers where methods for imaging and analysis have been used to solve specific problems,
  • describe the principles, including the interaction between probe and sample surface, for surface imaging and measurement using electron, light, interference and scanning probe microscopy, and describe the design of some instruments, and use a simple scanning electron microscope (SEM),
  • describe and evaluate the quality of the results from surface imaging and measurement, and describe the effect of instrument settings and performance,
  • describe the principles of surface analysis of selected methods, including X-ray, electron, ion, vibration and optical spectroscopy, and describe the design of some instruments,
  • explain and compare possible information and performance of some methods for surface analysis based on interaction between activating surface irradiation (e.g. electrons, ions, or X-rays) and sample surface and on instrument settings and performance,
  • describe the principles of depth profile analysis using ion etching/sputtering and of imaging, analysis and sample preparation using a focused ion beam (FIB),
  • describe the principle of transmission electron microscopy (TEM) and what kind of information and analysis results this method yields.

Content

Imaging, description and measurement of surfaces: methods included are e.g. light optical microscopy (LOM), SEM, scanning probe microscopy (SPM, STM and AFM), optical method for surface profiling (interference microscopy) and mechanical scanning probes. Chemical analysis of surfaces and depth profiles: methods included are e.g. X-ray spectroscopy (EDS, XRF), electron spectroscopy and diffraction (ESCA/XPS, Auger, EBSD), ion mass spectroscopy (SIMS), ion beam spectroscopy (RBS and ERDA), optical spectroscopy (GD-OES) and vibration spectroscopy (Raman and IR). Introduction to TEM for analysis of a materials internal structure, including description of sample preparation and analysis using EDS. FIB for imaging, analysis and sample preparation.

Instruction

Lectures, seminars, assignments, laboratory work.

Assessment

Written exam at the end of the course (8 hp). Approved laboratory work and assignments (2 hp).

If there are special reasons for doing so, an examiner may make an exception from the method of assessment indicated and allow a student to be assessed by another method. An example of special reasons might be a certificate regarding special pedagogical support from the disability coordinator of the university.

Other directives

This course cannot be included in the same degree as any of the courses 1TM146 and 1TM144.

Reading list

Reading list

Applies from: Autumn 2022

Some titles may be available electronically through the University library.

  • Leng, Y. Materials characterization : introduction to microscopic and spectroscopic methods

    Singapore: Wiley, c2008

    Find in the library

    Mandatory