Syllabus for Mathematical Methods of Physics II

Fysikens matematiska metoder II

Syllabus

  • 10 credits
  • Course code: 1FA155
  • Education cycle: Second cycle
  • Main field(s) of study and in-depth level: Physics A1N

    Explanation of codes

    The code indicates the education cycle and in-depth level of the course in relation to other courses within the same main field of study according to the requirements for general degrees:

    First cycle
    G1N: has only upper-secondary level entry requirements
    G1F: has less than 60 credits in first-cycle course/s as entry requirements
    G1E: contains specially designed degree project for Higher Education Diploma
    G2F: has at least 60 credits in first-cycle course/s as entry requirements
    G2E: has at least 60 credits in first-cycle course/s as entry requirements, contains degree project for Bachelor of Arts/Bachelor of Science
    GXX: in-depth level of the course cannot be classified.

    Second cycle
    A1N: has only first-cycle course/s as entry requirements
    A1F: has second-cycle course/s as entry requirements
    A1E: contains degree project for Master of Arts/Master of Science (60 credits)
    A2E: contains degree project for Master of Arts/Master of Science (120 credits)
    AXX: in-depth level of the course cannot be classified.

  • Grading system: Fail (U), Pass (3), Pass with credit (4), Pass with distinction (5)
  • Established: 2010-03-18
  • Established by:
  • Revised: 2018-08-30
  • Revised by: The Faculty Board of Science and Technology
  • Applies from: week 30, 2019
  • Entry requirements: 120 credits with Mathematical Methods of Physics or equivalent.
  • Responsible department: Department of Physics and Astronomy

Learning outcomes

On completion of the course, the student should acquire basic knowledge of some advanced topics in Mathematical Physics, such as the elements of functional analysis, the elements of algebra and group theory and the elements of differential geometry. The student should be able to solve problems within these topics and describe their significance in modern physics.

Content

The course is the direct continuation of the course in Mathematical methods of Physics (1FA121). The course deals with advanced topics in mathematical physics: the elements of functional analysis (topological space, metric space, Hilbert space, self-adjoint operators and their application in quantum mechanics), the elements of abstract algebra and group theory (associative, Lie algebra, Lie group, matrix groups, representations), the elements of topology and differential geometry with their application in physics (smooth manifolds, tensors, differential forms, fibre bundles, gauge theory, Yang-Mills theory).

Instruction

Lectures and lessons.

Assessment

Examination at the end of the course. 
 
If there are special reasons for doing so, an examiner may make an exception from the method of assessment indicated and allow a student to be assessed by another method. An example of special reasons might be a certificate regarding special pedagogical support from the disability coordinator of the university.

Syllabus Revisions

Reading list

Reading list

Applies from: week 30, 2019

  • Richtmyer, Robert D. Principles of advanced mathematical physics : Vol. 1

    New York: Springer, Cop. 1978

    Find in the library

  • Richtmyer, Robert D. Principles of advanced mathematical physics : Vol. 2

    New York: Springer, Cop. 1981

    Find in the library