Syllabus for Accelerator-Based Programming

Acceleratorbaserad programmering

  • 7.5 credits
  • Course code: 1TD055
  • Education cycle: Second cycle
  • Main field(s) of study and in-depth level: Computer Science A1F, Computational Science A1F

    Explanation of codes

    The code indicates the education cycle and in-depth level of the course in relation to other courses within the same main field of study according to the requirements for general degrees:

    First cycle

    • G1N: has only upper-secondary level entry requirements
    • G1F: has less than 60 credits in first-cycle course/s as entry requirements
    • G1E: contains specially designed degree project for Higher Education Diploma
    • G2F: has at least 60 credits in first-cycle course/s as entry requirements
    • G2E: has at least 60 credits in first-cycle course/s as entry requirements, contains degree project for Bachelor of Arts/Bachelor of Science
    • GXX: in-depth level of the course cannot be classified

    Second cycle

    • A1N: has only first-cycle course/s as entry requirements
    • A1F: has second-cycle course/s as entry requirements
    • A1E: contains degree project for Master of Arts/Master of Science (60 credits)
    • A2E: contains degree project for Master of Arts/Master of Science (120 credits)
    • AXX: in-depth level of the course cannot be classified

  • Grading system: Fail (U), Pass (3), Pass with credit (4), Pass with distinction (5)
  • Established: 2021-03-04
  • Established by: The Faculty Board of Science and Technology
  • Applies from: Autumn 2021
  • Entry requirements:

    120 credits. High Performance and Parallel Computing 7.5 credits or High Performance Programming 10 credits. Proficiency in English equivalent to the Swedish upper secondary course English 6.

  • Responsible department: Department of Information Technology

Learning outcomes

On completion of the course the student shall be able to:

  • write efficient code directly adapted to a specific accelerator type to solve specific problems;
  • use frameworks that offer abstractions of accelerator technology;
  • identify and motivate strengths and weaknesses of different accelerator architectures for given problems;
  • reason about data locality in heterogeneous systems;
  • measure and improve the performance of self-written and framework-based accelerator code;

     

Content

Orientation about characteristics for, among other things, the architecture types CPU, GPU, TPU, wide vector instructions. Memory architectures and the relationship between the host CPU and other devices. CUDA programming and explicit vector operations. Use of TensorFlow to solve optimization problems and calculation of major mathematical expressions. Solutions in traditionally compiled and interpreted languages ​​to use accelerators. Profiling of the relevant solutions.

Instruction

Lectures, computer labs, assignments and projects.

Assessment

Oral presentation of laboratory work and projects. Written assignments and project report. Laboratory work and assignments (5 credits) and projects (2.5 credits).

If there are special reasons, the examiner may make an exception from the specified examination method and allow an individual student to be examined in another way. Special reasons may, for example, be information about special pedagogical support from the university's coordinator for students with disabilities.

Reading list

The reading list is missing. For further information, please contact the responsible department.