Syllabus for Waves and Optics
Vågor och optik
A revised version of the syllabus is available.
Syllabus
- 5 credits
- Course code: 1FA522
- Education cycle: First cycle
-
Main field(s) of study and in-depth level:
Physics G2F
Explanation of codes
The code indicates the education cycle and in-depth level of the course in relation to other courses within the same main field of study according to the requirements for general degrees:
First cycle
- G1N: has only upper-secondary level entry requirements
- G1F: has less than 60 credits in first-cycle course/s as entry requirements
- G1E: contains specially designed degree project for Higher Education Diploma
- G2F: has at least 60 credits in first-cycle course/s as entry requirements
- G2E: has at least 60 credits in first-cycle course/s as entry requirements, contains degree project for Bachelor of Arts/Bachelor of Science
- GXX: in-depth level of the course cannot be classified
Second cycle
- A1N: has only first-cycle course/s as entry requirements
- A1F: has second-cycle course/s as entry requirements
- A1E: contains degree project for Master of Arts/Master of Science (60 credits)
- A2E: contains degree project for Master of Arts/Master of Science (120 credits)
- AXX: in-depth level of the course cannot be classified
- Grading system: Fail (U), Pass (3), Pass with credit (4), Pass with distinction (5)
- Established: 2008-03-18
- Established by:
- Revised: 2021-10-18
- Revised by: The Faculty Board of Science and Technology
- Applies from: Autumn 2022
-
Entry requirements:
60 credits science/technology. Participation in Mechanics II/Electrical Power Transmission Systems/Mechanics KF/Applied Mechanics I and Basics of Electrical Engineering III: Field Theory/Electromagnetism I/Electromagnetism, or this course can be taken in parallel.
- Responsible department: Department of Physics and Astronomy
Learning outcomes
On completion of the course, the student should be able to:
- account for fundamental quantities for waves and optics.
- identify, illustrate and explain physical concepts in waves and optics.
- describe and discuss technical applications of simple optical instruments.
- solve problems using suitable models, assumptions and approximations as well as be able to assess the results.
- plan and conduct simple experiments and give an oral and a written presentation of the results.
Content
Short repetition of basic concepts within wave physics, mechanical/acoustical waves: superposition, standing waves, beats, Doppler effect. Electromagnetic waves and optics: reflection, refraction, dispersion, phase and group velocity, Geometrical optics, optical instruments. Polarisation, optical activity, birefringence. Interference. Fraunhofer and Fresnel diffraction. Holography. Examples of radiation sources. Overview of manufacturing of optical components using modern technology.
Laboratory exercises in ray optics, wave optics, interference, polarisation. Project assignment and mandatory hand-in exercises in optics.
Instruction
Lectures, exercise groups, laboratory exercises (attendance is mandatory), and project assignments. Guest lecture. The course makes use of subject integrated communication training with feedback and self evaluation.
Assessment
Written examination at the end of the course (4 credits ). Laboratory exercises with written and oral reports (1 credit).
If there are special reasons for doing so, an examiner may make an exception from the method of assessment indicated and allow a student to be assessed by another method. An example of special reasons might be a certificate regarding special pedagogical support from the disability coordinator of the university.
Syllabus Revisions
- Latest syllabus (applies from Autumn 2023)
- Previous syllabus (applies from Autumn 2022, version 2)
- Previous syllabus (applies from Autumn 2022, version 1)
- Previous syllabus (applies from Autumn 2020)
- Previous syllabus (applies from Spring 2020)
- Previous syllabus (applies from Autumn 2019)
- Previous syllabus (applies from Autumn 2015, version 2)
- Previous syllabus (applies from Autumn 2015, version 1)
- Previous syllabus (applies from Autumn 2012)
- Previous syllabus (applies from Autumn 2008)
Reading list
Reading list
Applies from: Autumn 2022
Some titles may be available electronically through the University library.
-
Sears and Zemansky's university physics : with modern physics.
Young, Hugh D.;
Freedman, Roger A.;
Ford, A. Lewis;
Sears, Francis Weston
13th ed., international edition: San Francisco: Pearson Addison Wesley, cop. 2012
Mandatory
-
Hecht, Eugene
Optics
5. ed., Global Edition: Harlow: Pearson Education, c2017
Mandatory
-
Pedrotti, Frank L.;
Pedrotti, Leno S.;
Pedrotti, Leno Matthew
Introduction to optics
3.ed.: Harlow, Essex: Pearson, 2014