Syllabus for Computational Quantum Chemistry for Molecules and Materials

Kvantkemiska beräkningsmetoder för molekyler och material

A revised version of the syllabus is available.

Syllabus

  • 10 credits
  • Course code: 1KB273
  • Education cycle: Second cycle
  • Main field(s) of study and in-depth level: Chemistry A1F, Physics A1F

    Explanation of codes

    The code indicates the education cycle and in-depth level of the course in relation to other courses within the same main field of study according to the requirements for general degrees:

    First cycle

    • G1N: has only upper-secondary level entry requirements
    • G1F: has less than 60 credits in first-cycle course/s as entry requirements
    • G1E: contains specially designed degree project for Higher Education Diploma
    • G2F: has at least 60 credits in first-cycle course/s as entry requirements
    • G2E: has at least 60 credits in first-cycle course/s as entry requirements, contains degree project for Bachelor of Arts/Bachelor of Science
    • GXX: in-depth level of the course cannot be classified

    Second cycle

    • A1N: has only first-cycle course/s as entry requirements
    • A1F: has second-cycle course/s as entry requirements
    • A1E: contains degree project for Master of Arts/Master of Science (60 credits)
    • A2E: contains degree project for Master of Arts/Master of Science (120 credits)
    • AXX: in-depth level of the course cannot be classified

  • Grading system: Fail (U), Pass (3), Pass with credit (4), Pass with distinction (5)
  • Established: 2013-03-21
  • Established by:
  • Revised: 2022-02-25
  • Revised by: The Faculty Board of Science and Technology
  • Applies from: Autumn 2022
  • Entry requirements: 120 credits with 60 credits in chemistry or physics. Chemical Bonding and Computational Chemistry, 10 credits. Proficiency in English equivalent to the Swedish upper secondary course English 6.
  • Responsible department: Department of Chemistry - Ångström Laboratory

Learning outcomes

On completion of the course, the student shall be able to:
 

  • analyse how quantum chemical calculations can provide unique information and understanding of properties of molecules and materials,
  • critically analyse central aspects of the quantum-chemical methods for molecules, with emphasis on static and dynamic electron correlation,
  • critically analyse central aspects of models, methods and machinery of electronic structure calculations for condensed-matter systems, surfaces and interfaces, with an emphasis on periodic calculations,
  • use some of these models and methods in practical quantum-chemical calculations, make adequate interpretation of the results,
  • account for advantages and disadvantages of the various methods discussed in the course,
  • evaluate basic principles behind some methods that combine quantum mechanics and classical force fields (such as QM/MM) to describe large chemical systems, both molecules and materials,
  • discuss the essential features of research articles in applied computational quantum chemistry,
  • discuss some of the important and timely current problems within the area of quantum chemistry methods and calculations,
  • account for some aspects of the role of machine learning techniques within modern computational chemistry and e-science, such as force-field development and Molecules/Materials property prediction.

Content

Computational quantum chemistry can generate new information as well as deep and detailed understanding within most fields of chemistry. The course covers different electron-correlated QC methods for molecules and condensed-matter systems (solids, surfaces and nanomaterials), e.g., for energy and catalysis applications. Electronic structure "from bonds to bands". The course also provides an orientation of quantum chemistry as a building block within multiscale modelling.
The following concepts are discussed: Potential energy surfaces, electronic properties, Hartree-Fock theory (restricted and unrestricted) for molecules, DFT theory, open-shell systems, Slater determinants, static and dynamic electron correlation (CI, CC, CASSCF, MPx). Periodic DFT and Hartree-Fock calculations for the solid state and their surfaces (from a chemical perspective), plane wave basis sets for materials, DOS (density of electronic states) and quantum-chemical methods to describe long-range interactions. Non-periodic calculations for condensed matter. QM/MM methods. Calculation and interpretation of properties for molecules and materials.
A short overview of the quantum-mechanical postulates and of some of the important quantum-mechanical concepts and notation will be given at the beginning of the course. Basis of machine learning and neural networks.

Instruction

Lectures, computer lab sessions, literature assignment with oral and possibly written presentations.

Assessment

A written examination takes place at the end of the course (4 credits). Laboratory sessions and the literature assignment (6 credits). 

If there are special reasons for doing so, an examiner may make an exception from the method of assessment indicated and allow a student to be assessed by another method. An example of special reasons might be a certificate regarding special pedagogical support from the disability coordinator of the university.

Reading list

Reading list

Applies from: Autumn 2022

Some titles may be available electronically through the University library.

  • Jensen, Frank Introduction to computational chemistry

    2. ed.: Chichester: Wiley, cop. 2007

    Find in the library

  • Dronskowski, Richard Computational chemistry of solid state materials : a guide for materials scientists, chemists, physicists and others

    Weinheim: Wiley-VCH, cop. 2005

    Find in the library