Syllabus for High Performance Programming
Högprestandaprogrammering
Syllabus
- 10 credits
- Course code: 1TD062
- Education cycle: Second cycle
-
Main field(s) of study and in-depth level:
Computational Science A1N,
Computer Science A1N,
Technology A1N
Explanation of codes
The code indicates the education cycle and in-depth level of the course in relation to other courses within the same main field of study according to the requirements for general degrees:
First cycle
- G1N: has only upper-secondary level entry requirements
- G1F: has less than 60 credits in first-cycle course/s as entry requirements
- G1E: contains specially designed degree project for Higher Education Diploma
- G2F: has at least 60 credits in first-cycle course/s as entry requirements
- G2E: has at least 60 credits in first-cycle course/s as entry requirements, contains degree project for Bachelor of Arts/Bachelor of Science
- GXX: in-depth level of the course cannot be classified
Second cycle
- A1N: has only first-cycle course/s as entry requirements
- A1F: has second-cycle course/s as entry requirements
- A1E: contains degree project for Master of Arts/Master of Science (60 credits)
- A2E: contains degree project for Master of Arts/Master of Science (120 credits)
- AXX: in-depth level of the course cannot be classified
- Grading system: Fail (U), Pass (3), Pass with credit (4), Pass with distinction (5)
- Established: 2016-03-10
- Established by:
- Revised: 2022-10-20
- Revised by: The Faculty Board of Science and Technology
- Applies from: Autumn 2023
-
Entry requirements:
120 credits in science/engineering including 30 credits Mathematics and a second course in computer programming. Participation in Introduction to Scientific Computing. Introduction to Scientific Computing may be replaced by Scientific Computing II, Scientific Computing, bridging course or Numerical Methods and Simulation or Scientific Computing and Calculus. Proficiency in English equivalent to the Swedish upper secondary course English 6.
- Responsible department: Department of Information Technology
Learning outcomes
To pass, the student should be able to
- implement computational algorithms to efficient C-code for modern computer architectures,
- use tools for performance optimisation and debugging,
- propose and implement efficient performance optimisations,
- identify factors that restrict parallelism in an algorithm or a program,
- present written performance analysis in a clear and explicit way.
Content
Programming in C/C++ under Linux/Unix. Parallel programming with OpenMP and Pthreads. Task-based programming. Tools and methods for problem solving, software development, debugging and performance analysis. Different types of computer architectures and memory organisations. Efficient implementations of numerical methods on modern computer architectures. Applications from different areas in science and engineering.
Instruction
Lectures, computer labs, assignments and projects.
Assessment
Lab exercises (3 credits), assignments (3 credits) and projects (4 credits) reported both as written reports and orally.
Other directives
The course cannot be included in the same degree as 1DL560, 1TD351, 1TD480 or 1TD064.
Syllabus Revisions
- Latest syllabus (applies from Autumn 2023)
- Previous syllabus (applies from Spring 2023)
- Previous syllabus (applies from Spring 2019)
- Previous syllabus (applies from Autumn 2016)
Reading list
Reading list
Applies from: Autumn 2023
Some titles may be available electronically through the University library.
-
Pacheco, Peter.
An Introduction to Parallel Programming.
Burlington: Elsevier Science, 2011.
-
Fog, Agner
Optimizing software in C++: An optimization guide for Windows, Linux and Mac platforms
Technical University of Denmark,