Applied Linear Algebra for Data Science, 7.5 credits
Academic year 2023/2024
-
Spring 2024, 50%, Campus
Start date: 18 March 2024
End date: 2 June 2024
Application deadline: 16 October 2023
Application code: UU-62030 Application
Language of instruction: English
Location: Uppsala
Selection: Higher education credits in science and engineering (maximum 240 credits)
Registration: 4 March 2024 – 25 March 2024
Entry requirements: 120 credits. Computer Programming II or Programming, Bridging Course. Linear Algebra II. One of Introduction to Scientific Computing, Scientific Computing II, Scientific Computing Bridging Course or Statistical Machine Learning. Proficiency in English equivalent to the Swedish upper secondary course English 6.
Fees:
If you are not a citizen of a European Union (EU) or European Economic Area (EEA) country, or Switzerland, you are required to pay application or tuition fees. Formal exchange students will be exempted from tuition fees, as well as the application fee. Read more about fees.
Application fee: SEK 900
Tuition fee, first semester: SEK 18,125
Tuition fee, total: SEK 18,125
About the course
The fields of data science and machine learning lean on many applications of linear algebra. Data are often represented in matrix form, and data are analysed through matrix and vector operations. If you would like to understand the relations between features, meaning understanding how columns depend on each other, it can be done with the algorithm QR factorisation.
To reduce the dimensionality of large data sets (transform a large set of variables into a smaller one that still contains most of the information) is in the data science world called Principal Component Analysis (PCA), but is really the same thing as Singular Value Decomposition. Again, it is really an algorithm in linear algebra. Ranking algorithms, like the Pagerank algorithm which formed the basis of Google, are really a form of an algorithm for finding eigenvalues. To really understand data science and machine learning, linear algebra is essential.
In this course, we focus on numerical linear algebra, i.e. the computational methods and algorithms used in data science. We look at how data is stored, how computations are performed efficiently, and why the methods work.
More information
Contact
Department of Information Technology
hus 10, Lägerhyddsvägen 1
Box 337, 751 05 UPPSALA
Email: info@it.uu.se
Student counsellor
Email: studievagledare@it.uu.se