Syllabus for Data Mining



  • 7.5 credits
  • Course code: 1DL370
  • Education cycle: Second cycle
  • Main field(s) of study and in-depth level: Computer Science A1F, Data Science A1F
  • Grading system: Fail (U), Pass (3), Pass with credit (4), Pass with distinction (5)
  • Established: 2021-03-04
  • Established by:
  • Revised: 2022-02-01
  • Revised by: The Faculty Board of Science and Technology
  • Applies from: Autumn 2022
  • Entry requirements:

    120 credits of which 30 credits in mathematics and 45 credits in computer science and/or engineering, including Database Design I, Statistical Machine Learning and a second course in computer programming. Proficiency in English equivalent to the Swedish upper secondary course English 6.

  • Responsible department: Department of Information Technology

Learning outcomes

On completion of the course the student shall be able to:

  • explain and apply basic and advanced methods to extract information from both large and complex data,
  • use these methods with appropriate tools and languages,
  • evaluate and compare the suitability of different methods,
  • make judgments with regard to relevant scientific, social and ethical aspects in the application of data mining,
  • solve advanced data mining problems in a team.


Types of data (e.g. tables, texts, graphs) and their properties, association analysis (introduction and advanced methods), cluster analysis and validation, text and graph analysis, anomaly detection, social and ethical aspects in the area of data mining. Selected advanced topics. The topics are treated both theoretically and practically through laboratory work where selected methods are implemented and tested on typical data sets.


Lectures, seminars, laboratory sessions and project. Guest lecture.


Written examination (5 credits) and a project (2.5 credits) that is presented orally and in writing.

If there are special reasons for doing so, an examiner may make an exception from the method of assessment indicated and allow a student to be assessed by another method. An example of special reasons might be a certificate regarding special pedagogical support from the disability coordinator of the university.

Other directives

The course cannot be counted in a higher education qualification together with the course Data Mining I (1DL360), Data Mining II (1DL460) or Data Mining (1DL025).

Reading list

Reading list

Applies from: Autumn 2022

Some titles may be available electronically through the University library.

  • Introduction to data mining Tan, Pang-Ning; Steinbach, Michael; Karpatne, Anuj; Kumar, Vipin

    Second edition.: Harlow: Pearson Education, 2020

    Find in the library


  • Leskovec, Jurij; Rajaraman, Anand; Ullman, Jeffrey D. Mining of massive datasets

    Third edition.: Cambridge, United Kingdom: Cambridge University Press, 2020

    Find in the library

Last modified: 2022-04-26