Syllabus for Applied Linear Algebra for Data Science

Tillämpad linjär algebra för dataanalys


  • 7.5 credits
  • Course code: 1TD060
  • Education cycle: Second cycle
  • Main field(s) of study and in-depth level: Computer Science A1F, Data Science A1F
  • Grading system: Fail (U), Pass (3), Pass with credit (4), Pass with distinction (5)
  • Established: 2021-03-04
  • Established by: The Faculty Board of Science and Technology
  • Revised: 2023-02-09
  • Revised by: The Faculty Board of Science and Technology
  • Applies from: Autumn 2023
  • Entry requirements:

    120 credits. Computer Programming II or Programming, Bridging Course. Linear Algebra II. One of Introduction to Scientific Computing, Scientific Computing II, Scientific Computing Bridging Course or Statistical Machine Learning. Proficiency in English equivalent to the Swedish upper secondary course English 6.

  • Responsible department: Department of Information Technology

Learning outcomes

On completion of the course, the student should be able to:

  • discuss how linear algebra is used when solving problems in data science,
  • explain how the most common matrix factorizations are computed numerically,
  • implement and code numerical algoritms covered in the course,
  • analyze algorithms' computational and memory complexity and discuss efficient implementations,
  • argue for and apply linear algebra tools, such as principal component analysis, to various practical problems in data science.


The four fundamental subspaces associated with a matrix. Matrix factorization (decomposition) as a concept and idea. Sparse storage format. Solving large linear systems with LU-factorization and other factorizations (LDL and Cholesky). Iterative methodhs for large linear systems. The Krylov subspace and Krylov subspace methods, for example Arnoldi, Conjugate Gradient, Lanczos and GMRES.  QR factorization, Householder and Givens rotations. Constrained least squares. Singular value decomposition (SVD), pseudoinvers and applications. Principal component analysis and how it can be used for dimension reduction. Tensors and some of its applications in machine learning.


Lectures, problem solving, assignments.


Final exam (4.5 credits). Assignments (3 credits).

If there are special reasons for doing so, an examiner may make an exception from the method of assessment indicated and allow a student to be assessed by another method. An example of special reasons might be a certificate regarding special pedagogical support from the disability coordinator of the university.

Reading list

Reading list

Applies from: Autumn 2023

Some titles may be available electronically through the University library.

  • Strang, Gilbert Linear algebra and learning from data

    Wellesley, MA: Wellesley-Cambridge Press, [2019]

    Find in the library

  • Trefethen, Lloyd N.; Bau, David Numerical Linear Algebra

    Part of:

    Numerical linear algebra [Elektronisk resurs]

    Society for Industrial and Applied Mathematics, 1997

    Find in the library

Last modified: 2022-04-26