Master's Programme in Image Analysis and Machine Learning 2020/2021

Photo for Master's Programme in Image Analysis and Machine Learning 2020/2021
Application

Contribute to the visual intelligence of the machines of tomorrow by joining the Master's Programme in Image Analysis and Machine Learning! Image analysis and computer vision are increasingly present in society, finding use in medicine, life sciences, the humanities, robotics, astronomy, material science, security, and other areas. By specialising in the twin fields of image analysis and machine learning, you will gain the skills to help build a better world through pattern recognition and visual data processing.

The use of digital images and video has increased dramatically over the last few decades. By creating algorithms that draw inferences from patterns in data instead of relying on explicit instructions, computer systems can learn to make efficient and intelligent analyses of visual information. Engineers and researchers proficient in the analysis of images, artificial intelligence and machine learning are intensively sought after in the labour market, both in academia and in the industrial sector.

Why this programme?

The Master's Programme in Image Analysis and Machine Learning gives you a comprehensive understanding of its two main subjects, both from a practical and theoretical perspective. The skills you learn will make you an attractive candidate for positions such as software engineer and developer, researcher or project manager.

The potential applications of this skill set are vast, and may benefit society in a large variety of ways. You can help medical doctors plan surgeries to fit each individual patient, support them in detecting and curing cancer or rare diseases, assist historians and archaeologists in analysing huge archives of historical documents, or contribute to the development of robots who can understand human feelings.

During the programme you can expect to:

  • learn about modern image analysis techniques and their applications
  • gain a robust and comprehensive understanding of machine learning from both a practical and theoretical perspective
  • work in close proximity to leading experts and researchers in the field.
     
Student profile
You are someone with not only a theoretical foundation in  computer science and mathematics, but also with interest in developing intelligent machines who can help humans through efficient processing of visual data in a variety of real-life uses.

Degree

The programme leads to a Master of Science (120 credits) with Image Analysis and Machine Learning as the main field of study.

Programme

The first semester offers basic courses in both image analysis and machine learning, with the two fields becoming increasingly entwined as the courses progress.

The second semester will offer advanced theoretical studies that build upon the courses of the first semester. You will also learn about deep convolutional neural networks, a state-of-the-art machine learning technology which has become central in modern image processing and analysis.

During the third semester, you will gain practical experience by applying your knowledge in an area of your choosing. These areas include medical and biomedical image analysis, document analysis and digital humanities, scientific visualisation and social robotics. The semester also includes a team-work project that integrates a range of different skills and abilities.

An extensive degree project makes up the majority of the fourth and final semester, where you will get a chance to apply your freshly gained knowledge as part of a relevant project in the industrial or health-care sector or at an academic research unit, addressing real societal needs.

Courses within the programme

See complete outline of the programme.

Learning experience

Students will be encouraged to participate and actively contribute to teaching sessions while also taking responsibility for their own learning.

Instruction consists of lectures, teacher-supervised tuition, practical assignments, seminars, communication training, team-work and projects. The programme is intimately tied to contemporary research, and the courses closely follow current developments in image analysis, machine learning, and artificial intelligence.

The language of instruction is English.

Career

Upon completion of your studies, you will be qualified for a range of different positions. You will have the opportunity to apply your skill set in the industrial sector, for instance in software engineering, software development or project management within deep- and machine learning, artificial intelligence, image analysis, data mining and big data

The AI Index 2018 Annual Report found that within the AI field, machine learning is the most commonly requested qualification in job postings. Deep machine learning was also found to be the fastest growing qualification, with computer vision in second place. Around 70 000 new companies are created in Sweden every year, and many of these will offer exciting job opportunities or even be started by you

You may also choose to remain in academia and pursue a PhD. Image analysis and machine learning are highly active and popular research areas, and students with degrees from the Master's programme at Uppsala University are ideal candidates for PhD positions in the field

Career support
During your whole time as a student UU Careers offers you support and guidance. You have the opportunity to partake in a variety of career activities and events, as well as receive individual career counselling. This service is free of charge for all students at Uppsala University. Read more about UU Careers.

Admissions

Master's Programme in Image Analysis and Machine Learning

120 credits

Autumn 2020 - 100 % - Campus

Location: Uppsala

Application Deadline: 2020-01-15

Enrolment Code: UU-M1330 Application

Language of Instruction: English

Requirements:
Academic requirements
A Bachelor's degree, equivalent to a Swedish Kandidatexamen, from an internationally recognised university.
Also required is:

  • 75 credits in mathematics and computer science; out of which
  • 30 credits in mathematics including linear algebra and single variable calculus;
  • 30 credits in computer science including 5 credits in introductory programming; and in addition
  • 5 credits in statistics and probability.
Language requirements
All applicants need to verify English language proficiency that corresponds to English studies at upper secondary (high school) level in Sweden ("English 6"). This can be done in a number of ways, including through an internationally recognised test such as TOEFL or IELTS, or through previous upper secondary (high school) or university studies.
The minimum test scores are:
  • IELTS: an overall mark of 6.5 and no section below 5.5
  • TOEFL: Paper-based: Score of 4.5 (scale 1–6) in written test and a total score of 575. Internet-based: Score of 20 (scale 0–30) in written test and a total score of 90
  • Cambridge: CAE, CPE
More information about English language requirements

Selection: Students are selected based on:

  • a total appraisal of quantity and quality of previous university studies; and
  • a statement of purpose (1 page).
Tuition fee-paying students and non-paying students are admitted on the same grounds but in different selection groups.

Fees:

If you are not a citizen of a European Union (EU) or European Economic Area (EEA) country, or Switzerland, you are required to pay application and tuition fees. Fees cover application and tuition only and do not cover accommodation, academic literature or the general cost of living. Read more about fees.

Application Fee: SEK 900

Tuition fee, first semester: SEK 72500

Tuition fee, total: SEK 290000

Contact and further resources

Is this programme right for you?

Explore research at the Centre for Image Analysis and the Division of Visual Information and Interaction.

Contact

For programme-specific information, please contact: Study Counsellor Liselott Dominicus

studievagledare@it.uu.se

For admissions-related or general information, please contact: Our applicant support team

masterprogrammes@uu.se

Department of Information Technology

ITC, hus 1, 2 och 4, Lägerhyddsvägen 2

Box 337, 751 05 UPPSALA

info@it.uu.se

Student portal

Student portal

The Student Portal provides logged-on students access to course and programme pages, study results, e-transcripts, information from the student unions, file area, webmail, and more. In order to log on, you must have applied for a student account. The course and programme pages in the Student Portal can be seen without being logged on here. The pages contain basic information plus those features that the department has chosen to make accessible.