Master's Programme in Computational Science

Academic year 2021/2022

Photo for Master's Programme in Computational Science 2021/2022

Computer simulations of complex problems and management of large data sets (big data) play a key role in today's scientific studies and engineering design. The Master's Programme in Computational Science lets you broaden and deepen your knowledge of natural science or technology, with a specialisation in computers, large data sets, computer simulations and mathematical modelling. You will learn to apply computational methods, programmes and software, as well as mathematical and statistical models, within your sphere of interest.

Why this programme?

The Master's Programme in Computational Science dives into a multidisciplinary field where issues in areas such as chemistry, biology, physics, finance and geosciences are studied, using advanced computers and software to perform numerical simulations based on mathematical and statistical methods.

Today, numerical simulations on computers based on mathematical and statistical models, plays a key roll in natural sciences and technology. Experiments and simulations produce enormous data sets and methods for drawing conclusions from these becomes more and more common. It has become a new way to search for knowledge and to create new products. In industry, as well as in research, computer simulation has become an important tool. In some cases as a complement to experiments and in some cases there is no possibility to do experiments and you are only referred to computer simulations. For industry, computer simulations are attractive as you can do these quicker and for a smaller cost, it is more cost efficient.

During the programme you can expect to:

  • choose between five recommended course tracks or tailor your own track
  • learn to apply computational methods, models and software in the application area you are interested in.
Large or small, at the macro or micro level - various phenomena are today studied on a computer screen. To be able to use, develop and apply computer simulations within a certain subject area requires not only a solid background in the actual subject field such as chemistry or physics, but also computational methods, advanced computers, software, algorithms, programming, as well as statistical and mathematical models. The Master's Programme in Computational Science provides you with this knowledge.

You can choose between five recommended tracks of courses or you can tailor your own track depending on your educational background and areas of interest with regard to applications in science. The five recommended study tracks are:
  • numerical and mathematical modelling
  • computational physics
  • computational chemistry
  • computational finance
  • data engineering.
Student profile
You have a strong foundation in mathematics from your Bachelor's education and an interest in combining that with computer programming to solve problems in science and engineering. You might even have an interest in a specific area where scientific simulations are useful such as Physics, Chemistry, Engineering or Economics.

You want an educational experience that give you an opportunity to apply your knowledge in realistic cases. You enjoy problem solving and would like to improve your mathematical and programming skills to solve problems in an application area of science and technology.

A future PhD education is definitely a possibility you have thought about and you would value an opportunity to get in closer contact with current research. You also know that experts in Computational Science are in high demand at R&D in industry so starting to work right after graduation is also something you might be considering.

Related programmes
Computer Science
Mathematics, specialisation in Applied Mathematics and Statistics


The programme leads to a Master of Science (120 credits) with Computational Science as the main field of study.


You can choose to follow one of the five recommended study tracks or you can set up your own track with support from the student counsellor. The courses will then depend on your individual choices. At least 30 credits of the courses you choose must be in the field of computational science and at least 30 credits must be in one of the following fields: chemistry, biology, physics, geoscience, computer science or mathematics.

The five different study tracks consists of a package of preselected courses that gives you a specialisation into the specific field and these are:

  • Numerical and mathematical modelling: Here your get knowledge about how different mathematical models works and how you can compute the solutions with numerical methods.
  • Computational physics: Here you get knowledge about how to apply computational methods in problems in physics and at the same time you will focus on some area of physics, e.g., fluid dynamics.
  • Computational chemistry: Here your will get knowledge about how to apply computational methods for mathematical models in chemistry and at the same time you will focus on some area of chemistry, e.g., molecular dynamics.
  • Computational finance: Here you get knowledge about how to apply computational methods in financial mathematics and at the same time you deepen your knowledge in financial modelling, e.g., in the stock and option market.
  • Data engineering: Here you get knowledge about how to construct systems for handling and extracting information from very large data sets with the help of, e.g., cloud computing, distributed systems for large scale data analysis and methods in database techniques.
Each track has a recommended set of courses but the exact content in each track still depends on your specific background with previous courses and experience and is put together in dialogue with the student counsellor.

Courses within the programme

See complete outline for the programme.

Learning experience

The instruction consists of lectures, group work, project work and assignments. The pedagogy is student centred and puts a large emphasis on activating instruction building up practical skills that are directly useful in your coming profession. For group work, you will complete them together with your classmates outside the classroom. This way, you learn from each other and you train to be a team player.

In addition to the thesis work carried out throughout the final semester, a broader project course is included in the programme. In this project course you apply skills in computational science to a problem originating in academia or industry, while the course provides training in project work and management.

The instruction is in English and conducted in close connection with current research.


The interdisciplinary content of the programme provides you with unique skills currently in demand in the labour market. There is an increasing need of qualified manpower that can combine scientific knowledge with mathematical modelling, programming of advanced computer systems, large scale data analysis and proficiencies in using modern computational scientific tools. This combination is important, and a rapid increase in demand for qualified professionals with such combination is expected - both in Sweden and internationally.

The professional career may be in scientific or technical research and development, as scientific and/or technical advisor, consultant or project leader. The programme also prepares you for PhD studies in e.g. computational science, physics, bioscience, and mathematics.

Computers are used to study problems within sectors where experiments are expensive or impossible to perform, or where systems are so complicated that simplified assistance models are insufficient. Important examples can be found within the environmental industry and the energy sector. The use of tools based on computer calculations and simulations is currently increasing substantially within companies of different sizes and within many different sectors.

Computer simulations can be performed within many areas such as weather forecasts, design of pharmaceuticals, car crash simulations, development of new aircraft, or studies of climate change. Computer simulations play a central role for increased understanding and product development within these areas, as well as in determining performance and other qualities for processes and products, or to optimise design and quality.

Career support
During your whole time as a student UU Careers offers you support and guidance. You have the opportunity to partake in a variety of career activities and events, as well as receive individual career counselling. This service is free of charge for all students at Uppsala University. Learn more about UU Careers.


Below you will find the details about eligibility requirements, selection criteria, and tuition fee. For information on how to apply and what documents you need to submit, check the application guide. For this programme, besides the general supporting documents, you also need to submit one programme-specific document: a statement of purpose.

Master's Programme in Computational Science

120 credits

Autumn 2021, 100%, Campus

Location: Uppsala

Application deadline: 15 January 2021

Application code: UU-M1321 Application

Language of instruction: English

Academic requirements
A Bachelor's degree, equivalent to a Swedish Kandidatexamen, from an internationally recognised university. The main field of study must be within science, engineering, mathematics or computer science.
Also required is:

  • 30 credits in mathematics; and
  • 5 credits in numerical methods (numerical analysis or scientific computing); and
  • 5 credits in programming.
Language requirements
All applicants need to verify English language proficiency that corresponds to English studies at upper secondary (high school) level in Sweden ("English 6"). This can be done in a number of ways, including through an internationally recognised test such as TOEFL or IELTS, or through previous upper secondary (high school) or university studies.
The minimum test scores are:
  • IELTS: an overall mark of 6.5 and no section below 5.5
  • TOEFL: Paper-based: Score of 4.5 (scale 1–6) in written test and a total score of 575. Internet-based: Score of 20 (scale 0–30) in written test and a total score of 90
  • Cambridge: CAE, CPE
More information about English language requirements

Selection: Students are selected based on:

  • a total appraisal of quantity and quality of previous university studies; and
  • a statement of purpose (1 page).
Tuition fee-paying students and non-paying students are admitted on the same grounds but in different selection groups.


If you are not a citizen of a European Union (EU) or European Economic Area (EEA) country, or Switzerland, you are required to pay application and tuition fees. Fees cover application and tuition only and do not cover accommodation, academic literature or the general cost of living. Read more about fees.

Application fee: SEK 900

Tuition fee, first semester: SEK 72,500

Tuition fee, total: SEK 290,000

Contact and further resources

Is this programme right for you?


For programme-specific information, please contact: study counsellor Liselott Dominicus

For admissions-related or general information, please contact our applicant support team:

Department of Information Technology

Lägerhyddsvägen 2, Uppsala

P.O. Box 337, SE-751 05 Uppsala, Sweden