Cosmic eggs to relax the cosmological constant
Authors: Thomas Hertog, Rob Tielemans, Thomas van Riet
Preprint number: UUITP-02/21
Abstract: In theories with extra dimensions, the cosmological hierarchy problem can be thought of as the unnaturally large radius of the observable universe in Kaluza-Klein units. We sketch a dynamical mechanism that relaxes this. In the early universe scenario we propose, three large spatial dimensions arise through tunneling from a 'cosmic egg', an effectively one-dimensional configuration with all spatial dimensions compact and of comparable, small size. If the string landscape is dominated by low-dimensional compactifications, cosmic eggs would be natural initial conditions for cosmology. A quantum cosmological treatment of a toy model egg predicts that, in a variant of the Hartle-Hawking state, cosmic eggs break to form higher dimensional universes with a small, but positive cosmological constant or quintessence energy. Hence cosmic egg cosmology yields a scenario in which the seemingly unnaturally small observed value of the vacuum energy can arise from natural initial conditions.