Canonicalizing zeta generators: genus zero and genus one

Authors: Daniele Dorigoni, Mehregan Doroudiani, Joshua Drewitt, Martijn Hidding, Axel Kleinschmidt, Oliver Schlotterer, Leila Schneps, Bram Verbeek

Preprint number: UUITP-16/24

Abstract: Zeta generators are derivations associated with odd Riemann zeta values that act freely on the Lie algebra of the fundamental group of Riemann surfaces with marked points. The genus-zero incarnation of zeta generators are Ihara derivations of certain Lie polynomials in two generators that can be obtained from the Drinfeld associator. We characterize a canonical choice of these polynomials, together with their non-Lie counterparts at even degrees w ≥ 2, through the action of the dual space of formal and motivic multizeta values. Based on these canonical polynomials, we propose a canonical isomorphism that maps motivic multizeta values into the f-alphabet. The canonical Lie polynomials from the genus-zero setup determine canonical zeta generators in genus one that act on the two generators of Enriquez’ elliptic associators. Up to a single contribution at fixed degree, the zeta generators in genus one are systematically expanded in terms of Tsunogai’s geometric derivations dual to holomorphic Eisenstein series, leading to a wealth of explicit high-order computations. Earlier ambiguities in defining the non-geometric part of genus-one zeta generators are resolved by imposing a new representation-theoretic condition. The tight interplay between zeta generators in genus zero and genus one unravelled in this work connects the construction of single-valued multiple polylogarithms on the sphere with iterated-Eisenstein-integral representations of modular graph forms.

FOLLOW UPPSALA UNIVERSITY ON

Uppsala University on Facebook
Uppsala University on Instagram
Uppsala University on Youtube
Uppsala University on Linkedin