Desertification and monsoon climate change linked to shifts in ice volume and sea level

Chinese loess plateau.

Chinese loess plateau.

A new study shows that, during the Ice Age, both the East Asian summer monsoon and desertification in Eurasia were driven by fluctuating Northern Hemisphere ice volume and global sea level. Currently, two thirds of the world’s population depends on agriculture sustained by rains of the East Asian summer monsoon, and future climate change in this region can therefore have a major impact on global food production.


Huge areas of central China is covered by a plateau consisting of a fine grained soil type called loess – a sediment deposited here by winds during the Ice Age. The soils formed on loess are very fertile and have been one of the key factors driving cultural development and population growth in China for thousands of years. Additionally, the loess plateau also contains a geological archive that can be used to decipher past climate changes.

Through detailed examination of the loess sediments, a group led by researchers at Uppsala University together with colleagues from Denmark has identified how changes in climatological phenomena such as ice volume and sea level also affected the extent of deserts in China, as well as the behavior of the East Asian summer monsoon.

“We have conducted the most detailed dating of the loess to date, which has enabled us to identify changes in the monsoon and desertification processes in more detail and with much greater accuracy than previously possible. We can now compare these changes to other known climate changes such as variation in ice volume, sea level and even the Earth’s orbit during the Ice Age,” says Dr. Thomas Stevens, first author and researcher at Uppsala University.

“We can now show that when ice volume decreased and sea level rose, the summer monsoon rainfalls in East Asia intensified and spread further inland, while sandy deserts in China retreated,” says Dr. Stevens.

With today’s shrinking ice caps and rising sea levels, this has implications for how the Eurasian continent will once again experience changes in the summer monsoon rainfall and desertification.

The study was published today in Nature Communications.

Full article: T. Stevens, J.-P. Buylaert, C. Thiel, G. Újvári, S. Yi, A. S. Murray, M. Frechen & H. Lu (2018) Ice-volume-forced erosion of the Chinese Loess Plateau global Quaternary stratotype site, Nature Communications, DOI: 10.1038/s41467-018-03329-2

Read more about the research on loess and wind blown deposits at Uppsala University.

Börje Dahrén

Subscribe to the Uppsala University newsletter

FOLLOW UPPSALA UNIVERSITY ON

Uppsala University on Facebook
Uppsala University on Instagram
Uppsala University on Twitter
Uppsala University on Youtube
Uppsala University on Linkedin