Gammalt
ANVÄNDBARA LÄNKAR
- Redigering Webbplats
- Preprint Instructions
- Institutionen för fysik och astronomi
- Geometri- och fysikprojektet
- Uppsala universitets studentsidor
- Kontohantering
- Rumsreservationer
- Fikalista
Vår Forskning
Den huvudsakliga inriktningen av forskningen på vår avdelning är Kvantfältteori och Strängteori. Målet med forskningen är att förbättra vår förståelse av hur olika kvantfältteorier och strängteorier fungerar. I framtiden kommer detta förhoppningsvis hjälpa oss att lösa många fundamentala problem i vår beskrivning av naturen, såsom en kvantmekanisk teori för gravitation och teorier för att beskriva starkt interagerande system. Nedan hittar ni en lista över ämnen som vår forskning behandlar med länkar till kortfattade beskrivningar, användbara referenser samt en lista över våra medarbetare som forskar i respektive ämne.
Gruppmedlemmar
Fakultet: Paolo di Vecchia (Nordita), Henrik Johansson, Oliver Schlotterer
Long-term researcher: Marco Chiodaroli
Post.Doc. Fellows: Francesco Alessio (Nordita), Sourav Sarkar, Ingrid Vazquez-Holm, Sam Wikeley
Doktorander: Maor Ben-Shahar, Lucile Cangemi, Lucia Garozzo, Carlos Gustavo Rodriguez Fernandez, Yoann Sohnle
Former group members:
- Alexandros Anastasiou (Nordita)
- Thales Azevedo, now associate professor at Universidade Federal de Rio de Janeiro, Brazil
- Filippo Balli (visiting student), now postdoc at University of Florence, Italy
- Lara Bohnenblust (visiting student, Nordita), now PhD student at Uni Zurich, Switzerland
- Gang Chen, now postdoc at NBI, Copenhagen, Denmark
- Marco David (visiting student), now PhD student at UC Berkeley, USA
- Alex Edison, now postdoc at Northwestern University, USA
- Alessandro Georgoudis, now postdoc at QMUL, London, UK
- Max Guillen, now postdoc at Chalmers University Gothenburg, Sweden
- Kays Haddad, now postdoc at Humboldt University, Berlin, Germany
- Marios Hadjiantonis (Nordita)
- Carlo Heissenberg, now postdoc at QMUL, London, UK
- Martijn Hidding, now postdoc at ETH Zurich, Switzerland
- Gregor Kälin, now postdoc at DESY, Hamburg, Germany
- Gustav Mogull, now postdoc at HU Berlin and MPI Potsdam, Germany
- Joshua Nohle (Nordita)
- Paolo Pichini, now postdoc at QMUL, London, UK
- Oluf Tang Engelund
- Fei Teng, now postdoc at Pennsylvania State University, USA
- Bram Verbeek
- Tianheng Wang (visiting student), now postdoc at Seoul National University
- Zhewei Yin, now postdoc at Northwestern University, USA
- Yong Zhang, now postdoc at Perimeter Institute, Waterloo, Canada
Seminarier
Andra årets masterstudenter rekommenderas närvara vid våra Seminarier, där de kan höra om aktuell forskning i teoretisk fysik. Det drivs även en mer pedagogisk Journalklubb, där doktorander och post-docs möts och presenterar samt diskuterar klassiska artiklar och intressanta ämnen relaterade till vår forskning. Aktivt deltagande i journalklubben (dvs. att närvara samt presentera något ämne) kan vid behov räknas som en kurs.
Tidigare Medlemmar
Här hittar du en lista över alla tidigare medlemmar och långvariga besökare till vår avdelning.
Fakultet | ||
Thomas Van Riet *** | ||
Konstantin Zarembo | ||
Giuseppe Dibitetto | ||
Monica Guica | ||
Andreas Gustafsson ** | ||
Örjan Dammert | ||
Paul Howe * | ||
Alexios Polychronakos | ||
Poul Damgaard | ||
*Gästprofessor vår 2005 | ||
** Gästprofessor vår 2018 | ||
*** Gästprofessor höst 2020 och vår 2021 | ||
Forskarassistenter | ||
Per Sundell | ||
Thomas Klose | ||
Post docs | ||
Kays Haddad | ||
Zhewei Yin | ||
Max Guillen | ||
Andrea Manenti | ||
Martijn Hidding | ||
Carlo Heissenberg | ||
Vladimir Bashmakov | ||
Bram Verbeek | ||
Luca Cassia | ||
Paul-Konstantin Oehlmann | ||
Nicolò Piazzalunga | ||
Rodolfo Panerai | ||
Usman Naseer | ||
Parijat Dey | ||
Yong Zhang | ||
Vladimir Procházka | ||
Yongchao Lu | ||
Marjorie Schillo | ||
Emtinan Elkhidir | ||
Arash Arabi Ardehali | ||
Tobias Hansen | ||
Adam Bzowski | ||
Fei Teng | ||
Antonio Pittelli | ||
Gustav Mogull | ||
Souvik Banerjee | ||
Achilleas Passias | ||
Aleksandr Popolitov | ||
Luca Visinelli | ||
Andrei Constantin | ||
Fabrizio Nieri | ||
Thales Azevedo | ||
Gang Chen | ||
Pietro Longhi | ||
Yiwen Pan | ||
Oluf Engelund | ||
Rak-Kyeong Seong | ||
Si Chen | ||
Adam Sieradzan | ||
Amit Dekel | ||
Till Bargheer | ||
Gabriele Tartaglino-Mazzucchelli | ||
Susha Parameswaran | ||
Amjad Ashoorioon | ||
Andrey Krokhotin | ||
Thomas van Riet | ||
Manuela Kulaxizi | ||
Diego Chialva | ||
Thomas Klose | ||
Egor Babaev | ||
James Gregory | ||
Josef Kluson | ||
Madoka Nishimura | ||
Laura Tamassia | ||
Marcel Vonk | ||
Lärarassistenter | ||
Åsa Nordström | ||
Doktorander | ||
Paolo Pichini | ||
Giulia Fardelli | ||
Simon Ekhammar | ||
Alexander Söderberg | ||
Matthew Magill | ||
Filippo Balli ** | ||
Lorenzo Ruggeri | ||
Robin Schneider | ||
Rebecca Lodin | ||
Konstantina Polydorou | ||
Anastasios Gorantis | ||
Suvendu Giri | ||
Gregor Kälin | ||
Alessandro Georgoudis | ||
Erik Widén | ||
Daniel Medina Rincon | ||
Sergio Vargas Avila | ||
Luigi Tizzano | ||
Tianheng Wang * | ||
Xinyi Chen-Lin | ||
Raul Pereira | ||
Jacob Winding | ||
Xubiao Peng | ||
Johan Blåbäck | ||
Shuang-Wei Hu | ||
Malin Göteman | ||
Kasper Larsen | ||
Johan Källén | ||
Martin Lundgren | ||
Joel Ekstrand | ||
Olof Ohlsson | ||
Sergey Slizovskiy | ||
Valentina Giangreco Marotta Puletti | ||
Niklas Johansson | ||
Magdalena Larfors | ||
Luis Melo Dos Santos | ||
Jonas (Persson) Kronander | ||
Andreas Bredthauer | ||
Daniel Domert | ||
Kristel Torokoff | ||
Martin Olsson | ||
Johan Engquist | ||
Martin Lübcke | ||
Peter Rajan | ||
Keizo Matsubara | ||
Lisa Freyhult | ||
Mikael Smedbäck | ||
Fredric Kristiansson | ||
Alexei Kotov | ||
Egor Babaev | ||
Alexei Sevostianov | ||
Vadim Cheianov | ||
Pär Stjernberg | ||
Topi Kärki | ||
* Gästdoktorand vår 2018 | ||
**
Gästdoktorand 2021/2022
|
Maxim Zabzine
This is me at work.
Research Interests
Cool stuff with manifolds and geometry.
Current interests are
- The theory of everything
- My family
- Some not good stuff (smoke, drink, ...)
- The dreams about happy life
Teaching
I have taught the following three courses
Mathematical Methods of Physics II
Geometrical Methods in Theoretical Physics
Useful Links
Physics
- arXiv e-Print archive
- Spires
- Front for the Mathematics ArXiv
- Today preprints – hep-th
- Today preprints – math
- KEK Reports & Library
- MR Lookup
- Theoretical Physics, Uppsala
Information resources
News online
Books on-line
Contact
Maxim Zabzine
Department of Physics and Astronomy
Uppsala University
Box 516
SE-75120 Uppsala
Sweden
phone: +46(0)18 471 3247
fax: +46(0)18 471 5999
e-mail: maxim.zabzine@physics.uu.se
Fysikens Matematiska Metoder
Gamla tentamina
Här finns tentamina från tidigare år
- Tentamen och lösning juni 2014
- Tentamen och lösning mars 2014
- Tentamen och lösning maj 2013
- Tentamen och lösning mars 2013
- Tentamen och lösning maj 2012
- Tentamen och lösning mars 2012
- Tentamen och lösning mars 2011
- Tentamen och lösning mars 2010
- Tentamen och lösning oktober 2008
- Tentamen och lösning mars 2008
- Tentamen och lösning oktober 2007
- Tentamen och lösning januari 2007
- Tentamen och lösning oktober 2006
- Tentamen och lösning mars 2006
Gamla inlämningsuppgifter
- 2014b (F): Hw1 och Sol1, Hw2 och Sol2, Hw3 och Sol3, Hw4 och Sol4, Hw5och Sol5
- 2014a (QNV): Hw1 och Sol1, Hw2 och Sol2, Hw3 och Sol3, Hw4 och Sol4, Hw5och Sol5
- 2013b (F): Hw1 och Sol1, Hw2 och Sol2, Hw3 och Sol3, Hw4 och Sol4, Hw5och Sol5
- 2013a (QNV): Hw1 och Sol1, Hw2 och Sol2, Hw3 och Sol3, Hw4 och Sol4, Hw5och Sol5
- 2012b (F): Hw1 och Sol1, Hw2 och Sol2, Hw3 och Sol3, Hw4 och Sol4, Hw5och Sol5
- 2012a (QNV): Hw1 och Sol1, Hw2 och Sol2, Hw3 och Sol3, Hw4 och Sol4, Hw5och Sol5
- 2011: Hw1 och Sol1, Hw2 och Sol2, Hw3 och Sol3, Hw4 och Sol4, Hw5 och Sol5
- 2010: Hw1 och Sol1, Hw2 och Sol2, Hw3 och Sol3, Hw4 och Sol4, Hw5 och Sol5
- 2009: Hw1 och Sol1, Hw2 och Sol2, Hw3 och Sol3, Hw4 och Sol4, Hw5 och Sol5
- 2008: Hw1 och Sol1, Hw2 och Sol2, Hw3 och Sol3, Hw4 och Sol4, Hw5 och Sol5
Användbara anteckningar och länkar
Fysikens matematiska metoder II
This is an upper level course in mathematical methods of physics. The course consists of 30 hours of lectures. At the end of the course there will be a 5 hour exam. In addition, there will be three homeworks in which you may turn in your solution, but this is voluntary.
The main topics covered in the course include the elements of functional analysis, some bits of abstract algebra and the group theory and finally the elements of topology and differential geometry. The different examples and applications from physics will be discussed through the course.
SPRING 2016
The course plan can be found here and the schedule can be consulted in the following link.
The following homeworks should be handed in:
The exam will be on the 22nd of March, from 9 am till 2 pm in the room Å4004. You can bring any notes and books to the exam. You are not allowed to use any electronic devices.
OLD EXAMS
OLD HOMEWORKS
- 2015: Homework 1, Homework 2, Homework 3
- 2014: Homework 1, Homework 2, Homework 3
- 2013: Homework 1, Homework 2, Homework 3
- 2012: Homework 1, Homework 2, Homework 3
- 2011: Homework 1, Homework 2, Homework 3
- 2008: Homework 1, Homework 2, Homework 3 and Solution 3
USEFUL NOTES AND LINKS
- Summary of functional analysis notes.pdf
- The notes by Joseph Minahan from the previous years, notes.pdf
- “Mathematical Methods in Quantum Mechanics”, by
Gerald Teschl, homepage - “An Elementary Introduction to Groups and Representations”, by Brian C. Hall, notes
Geometriska metoder i teoretisk fysik
The course provides an introduction to geometrical and topological tools used in modern theoretical physics. The prerequisite for taking the course is basic knowledge in differential geometry and group theory. This course is intended for advanced MSc students and PhD-students. For the Master students the course code is 1FA153.
AUTUMN 2015
The course plan can be found here and the schedule can be consulted in the following link.
The following homeworks should be handed in by 5pm on the 15th of January 2016:
OLD HOMEWORKS
- 2014: Homework 1, Homework 2, Homework 3, Homework 4
- 2012: Homework 1, Homework 2, Homework 3, Homework 4
- 2011: Homework 1, Homework 2, Homework 3, Homework 4
- 2010: Homework 1, Homework 2, Homework 3, Homework 4
USEFUL NOTES AND LINKS
- A. Hatcher, Algebraic Topology, Cambridge University Press, 2002. on-line version
- P. B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, on-line version
- T. Eguchi, P. B. Gilkey and A. J. Hanson,
“Gravitation, Gauge Theories And Differential Geometry”, Phys. Rept. 66 (1980) 213 (it can be downloaded only within the University), on-line version from Science Direct - The lecture notes on “Geometry of Vector Bundles and an Introduction to Gauge Theory”
- The lecture notes by David A. Cox on the algebraic and toric geometry his homepage
- The lectures by Matthias Blau on the application of Mathai-Quillen formalism with the discussion of supersymmetric quantum mechanics the link
Joseph Minahan
Address
Joseph Minahan
Department of Physics and Astronomy
Uppsala university
Box 516
SE-75120 Uppsala
Sweden
phone: +4618-471 3291
e-mail: joseph.minahan@physics.uu.se
Teaching
Lecture notes for various courses I have taught can be found here.
Research interests
My main research interests are in string theory and quantum field theory. Over the last several years I have been studying the AdS/CFT duality beyond the supergravity limit. More specifically, this research is centred on using integrability and localization to find exact results for supersymmetric theories.
Joseph Minahan's Lecture Notes
These are lecture notes for various courses I have taught over the years. Comments are always welcome.
“I hate writing, I love having written.”
-- Dorothy Parker
- Lecture notes in mathematical physics
- Joe's relatively small book on special relativity
- Lecture notes in general relativity
- Lecture notes in quantum field theory (taught at MIT, spring 2011)
- Quantum mechanics lecture notes can be found here
Henrik Johansson
| Henrik Johansson phone: +4618-471 3220 |
RESEARCH
My research interests are in quantum field theory and supergravity, with a focus on formal aspects of scattering amplitudes in these theories. Scattering amplitudes can be used as a powerful tool to understand hidden symmetries and remarkable relations between different classes of theories. My work has led to the realization that a generic gravity theory can be formally understood as a product of two gauge theories.
KAW project – From Scattering Amplitudes to Gravitational Waves
This project will develop new methods for precise calculations at the forefront of theoretical physics, ranging from scattering processes in quantum field theory to gravitational wave emission, by using the Bern-Carrasco-Johansson (BCJ) double-copy framework, that connects gauge, gravity and string theories. The project will involve cooperation between the Division of Theoretical Physics at Uppsala University, and the Nordic Institute for Theoretical Physics (Nordita) that is located in Stockholm.
The project consists of five semi-independent parts:
- Develop new methods for gauge, gravity and string theory scattering amplitudes
- Simplify perturbative GR: potentials, black-hole mergers and gravitational waves
- Advance integration techniques for loop amplitudes and classical gravity
- Understand the origins of color-kinematics duality and the double copy
- Extend the double copy to curved spaces
Background: In one of my papers from 2008, we introduce the notion of a duality between kinematical quantities (spacetime quantities) and color quantities (internal space quantities). In this framework gauge theories are organized as a specific product of two copies of Lie algebras, one for the color degrees of freedom and one for the kinematical degrees of freedom. Gravitational theories are analogously organized as a double copy of the kinematical Lie algebras. This is most transparent for S-matrix elements, where this powerful structure has been used for amplitude calculations up to the fifth loop order in certain supersymmetric gauge and gravity theories.
There is by now a growing list of theories where the duality and double-copy structures have been observed; it includes: pure (super-)Yang-Mills theories, pure (super)gravities, QCD and its supersymmetric extensions, Yang-Mills-Einstein (super)gravities, the nonlinear sigma model (NLSM), Born-Infeld theories and also string theory. Gauge and gravity theories are now more closely linked to each other than ever before, but even effective theories that have no gauge symmetry fit into the new picture. New connections to string theory have also emerged out of this structure: heterotic/closed string theories obey color-kinematics duality and open string theories are double copies of simpler objects.
When the LIGO experiment in September 2015 discovered the first gravitational waves from binary black holes—which awarded them the 2017 Nobel Prize in Physics—a new window for observations of the universe opened up. In order to fully utilize this new opportunity, both theoretical calculation methods and experiments are expected to undergo significant upgrades in the future. Recent initial studies have convincingly demonstrated that the BCJ double-copy method is able to reproduce low-order binary black-hole dynamics and associated gravitational-wave emissions at significantly reduced computational cost compared to standard methods, and as such it has the potential to revolutionize analytical calculations of gravitational waves.
TEACHING
- Mathematical Methods of Physics QNV VT-15
- Mathematical Methods of Physics F VT-16
- Analytical Mechanics HT-16
- Analytical Mechanics HT-17
- Analytical Mechanics HT-18
- Analytical Mechanics HT-19
Fysikens matematiska metoder QNV VT-15
The final exam will be on the 20th of March, 8:00-13:00 at Bergsbrunnagatan 15, Sal 1. You can bring Mathematics Handbook and Physics Handbook only.
Please, fill out the course evaluation at studentportalen
Homework assignments (strictly voluntary)
- Homework 1 to be handed in before 5 p.m., February 11 Solution 1
- Homework 2 to be handed in before 5 p.m., February 19 Solution 2
- Homework 3 to be handed in before 5 p.m., February 26 Solution 3
- Homework 4 to be handed in before 5 p.m., March 5 Solution 4
- Homework 5 to be handed in before 5 p.m., March 12 Solution 5
Useful links
- Course page in studentportalen.
- Vektoranalys. Kompendium, PDF, 12 569 kb.
- The home page with the exams and homeworks from the previous years.
Teacher
Henrik Johansson, 018-4713243, henrik.johansson@physics.uu.se
Exercise classes
Luigi Tizzano, 018-4713248, luigi.tizzano@physics.uu.se
Exam with Solution
Final exam: 12th of October, 8:00-13:00, at Polacksbacken, Skrivsalen. You can bring Mathematics Handbook and Physics Handbook only.
Please, fill out the course evaluation at studentportalen. Thank you in advance!
Course Description and Instructions
HOMEWORK ASSIGNMENTS
- Homework 1 to be handed in before 5 p.m., September 9.
- Homework 2 to be handed in before 5 p.m., September 20.
- Homework 3 to be handed in before 5 p.m., September 29.
USEFUL LINKS
- Course page in studentportalen.
- Tutorial problems (L)
- Notes: 1) Adiabatic change; 2) Time-independent perturbation theory
- Old Exams: Exam 151013
- Solutions to Old Exams: 151013
TEACHERS
- Lectures: Henrik Johansson, 018-4713243, henrik.johansson@physics.uu.se
- Tutorials: Suvendu Giri, 018-4713244, suvendu.giri@physics.uu.se
Fysikens matematiska metoder F VT-16
Final exam: 30th of May, 14:00-19:00, at Bergsbrunnagatan 15, Sal 1. You can bring Mathematics Handbook and Physics Handbook only.
Please, fill out the course evaluation at studentportalen
HOMEWORK ASSIGNMENTS (STRICTLY VOLUNTARY)
- Homework 1 to be handed in before 5 p.m., April 13 Solution 1
- Homework 2 to be handed in before 5 p.m., April 20 Solution 2
- Homework 3 to be handed in before 5 p.m., April 27 Solution 3
- Homework 4 to be handed in before 5 p.m., May 4 Solution 4
- Homework 5 to be handed in before 5 p.m., May 12 Solution 5
- Homework 6 to be handed in before 5 p.m., May 19 Solution 6
USEFUL LINKS
- Course page in studentportalen.
- Vektoranalys. Kompendium, PDF, 12 569 kb.
- Fysikens matematiska metoder QNV VT-15.
- Old exams and homeworks from years 2006-2014.
TEACHER
Henrik Johansson, 018-4713243, henrik.johansson@physics.uu.se
EXERCISE CLASSES
A: Johan Nilsson, 070-1679333, johan.nilsson@physics.uu.se
B,C: Luigi Tizzano, 018-4713248, luigi.tizzano@physics.uu.se
Exam with Solution
Final exam: 18th of October, 8:00-13:00, at Bergsbrunnagatan 15, Sal 2. You can bring Mathematics Handbook and Physics Handbook only.
Please, fill out the course evaluation at studentportalen. Thank you in advance!
Course Description and Instructions
HOMEWORK ASSIGNMENTS
- Homework 1 to be handed in before 5 p.m., September 12.
- Homework 2 to be handed in before 5 p.m., September 21.
- Homework 3 to be handed in before 5 p.m., October 3.
USEFUL LINKS
- Course page in studentportalen.
- Tutorial problems (L)
- Extra notes: 1) Adiabatic change; 2) Time-independent perturbation theory
- Old Exams: Exam 161012, Exam 151013
- Solutions to Old Exams: 161012, 151013
TEACHERS
- Lectures: Henrik Johansson, 018-4713243, henrik.johansson@physics.uu.se
- Tutorials: Suvendu Giri, 018-4713244, suvendu.giri@physics.uu.se
Analytical Mechanics HT-19
Final exam: 25th of October, 8:00-13:00, at Fyrislundsgatan 80, Sal 1. You can bring Mathematics Handbook and Physics Handbook only.
Please fill out the course evaluation at Studentportalen. Thank you in advance!
Course Description and Instructions
HOMEWORK ASSIGNMENTS
- Homework 1 to be handed in before 5 p.m., September 16. Solution 1
- Homework 2 to be handed in before 5 p.m., September 26. Solution 2
- Homework 3 to be handed in before 5 p.m., October 16. Solution 3
USEFUL LINKS
- Course page in studentportalen.
- Tutorial problems
- Solutions to the tutorial problems: T1, T2, T3, T4, T5, T6, T7, T8, T9
- Lecture notes: L1, L2, L3, L4, L5, L6, L7, L8, L9
- Old Exams: Exam 181019, Exam 171018, Exam 161012, Exam 151013
- Solutions to Old Exams: 181019, 171018, 161012, 151013, Corrected solution 5c of 20151013
TEACHERS
- Lectures: Henrik Johansson, 018-4713243, henrik.johansson@physics.uu.se
- Tutorials: Suvendu Giri, 018-4713244, suvendu.giri@physics.uu.se
Analytical Mechanics HT-19
Final exam: 25th of October, 8:00-13:00, at Fyrislundsgatan 80, Sal 1. You can bring Mathematics Handbook and Physics Handbook only.
Please fill out the course evaluation at Studentportalen. Thank you in advance!
Course Description and Instructions
HOMEWORK ASSIGNMENTS
- Homework 1 to be handed in before 5 p.m., September 16. Solution 1
- Homework 2 to be handed in before 5 p.m., September 26. Solution 2
- Homework 3 to be handed in before 5 p.m., October 16. Solution 3
USEFUL LINKS
- Course page in studentportalen.
- Tutorial problems
- Solutions to the tutorial problems: T1, T2, T3, T4, T5, T6, T7, T8, T9
- Lecture notes: L1, L2, L3, L4, L5, L6, L7, L8, L9
- Old Exams: Exam 181019, Exam 171018, Exam 161012, Exam 151013
- Solutions to Old Exams: 181019, 171018, 161012, 151013, Corrected solution 5c of 20151013
TEACHERS
- Lectures: Henrik Johansson, 018-4713243, henrik.johansson@physics.uu.se
- Tutorials: Suvendu Giri, 018-4713244, suvendu.giri@physics.uu.se
Analytical Mechanics HT-18
Final Exam and Solution
Final exam: 19th of October, 8:00-13:00, at Polacksbacken, Skrivsalen. You can bring Mathematics Handbook and Physics Handbook only.
Please, fill out the course evaluation at studentportalen. Thank you in advance!
Course Description and Instructions
HOMEWORK ASSIGNMENTS
- Homework1 to be handed in before 5 p.m., September 18.
- Homework 2 to be handed in before 5 p.m., September 25.
- Homework 3 to be handed in before 5 p.m., October 10.
USEFUL LINKS
- Course page in studentportalen
- Tutorial problems (L)
- Solutions to tutorial problems: 1, 2, 3, 4, 5, 6, 7, 8, 9
- Lecture notes: L1, L2, L3, L4, L5, L6, L7, L8, L9
- Old Exams: Exam 171018, Exam 161012
- Solutions to Old Exams: 171018, 161012
TEACHERS
- Lectures: Henrik Johansson, 018-4713243, henrik.johansson@physics.uu.se
- Tutorials: Suvendu Giri, 018-4713244, suvendu.giri@physics.uu.se
Oliver Schlotterer
| Oliver Schlotterer e-mail: oliver.schlotterer@physics.uu.se |
RESEARCH INTERESTS
My research is centered on the rich physical implications and mathematical structures of string scattering amplitudes. First, I am studying the point-particle limit and low-energy expansion of string amplitudes to reveal striking connections between gauge theories, gravity and effective field theories. Second, I am using string amplitudes as a mathematical laboratory for integration on Riemann surfaces of different genera. In this way, string theory greatly facilitates the construction and organization of iterated integrals and modular forms which find applications in particle physics and inspire new mathematical research in number theory and algebraic geometry.
ERC-StG PROJECT UNISCAMP 2019-2023
My research during the period January 2019 to December 2023 was funded through the ERC Starting- Grant project UNISCAMP – The unity of scattering amplitudes: gauge theory, gravity, strings and number theory. During this 60-month funding period, up to 5 simultaneous team members produced a total of 45 research papers including the following research highlights:
- the long-sought-for explicit construction of polylogarithm functions on Riemann surfaces of arbitrary genus in arXiv:2306.08644
- relating the modular graph forms in genus-one string amplitudes to equivariant iterated Eisenstein integrals in the algebraic-geometry literature arXiv:2209.06772
- new synergies between conventional string theories and the more recent ambitwistor and chiral models, informing string interactions of infinitely many modes from field-theory methods
- understanding and exposing the double-copy structure of gravitational amplitudes through a fusion of string-theory, field-theory and Lie-algebra methods
REVIEWS
My group coauthored three White Papers within the Snowmass community planning exercise:
- Functions Beyond Multiple Polylogarithms for Precision Collider Physics, arXiv:2203.07088
- String perturbation theory, arXiv:2203.09099
- The double copy and its application, arXiv:2204.06547
Moreover, I recently published a comprehensive review together with C. Mafra, Tree-level amplitudes from the pure spinor superstring, Phys. Rept. 1020 (2023), arXiv:2210.14241. We review the supersymmetric computation of multiparticle tree-level amplitudes of massless superstring excitations as well as their interplay with the gravitational double copy and multiple zeta values.
REVIEW MATERIAL THAT YOU CANNOT FIND ON THE ARXIV
- The number theory of string amplitudes (draft version of a proceedings article for the conference “Numbers and Physics”, ICMAT, Madrid, Spain, September 2014)
- One-loop string scattering amplitudes as iterated Eisenstein integrals jointly written with Johannes Broedel (draft version of a proceedings article for the KMPB Conference “Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory”, DESY Zeuthen, Zeuthen, Germany, October 2017)
TEACHING
I am teaching a doublet of master courses on string theory from fall 2023 to spring 2024, the lecture notes including homework problems can be found in the following pdf.
Moreover, you can find the notes of Max Guillen's extra lectures on ‘‘Advanced Topics in String Theory’’ (March 2021) in the following pdf.
Dmytro Volin
Address
Dmytro Volin
Department of Physics and Astronomy
Uppsala university
Box 516
SE-75120 Uppsala
Sweden
phone:
e-mail: dmytro.volin@physics.uu.se
For the period 2018-2022, also holds a Nordic Assistant Professor position at Nordita, Stockholm
RESEARCH INTERESTS
I conduct research in mathematical physics, less conventional “physical mathematics” would be even a better wording. The research of past years was focused on the AdS/CFT integrability, quantum spectral curve, non-compact Young diagrams and Bethe equations, representation theory of supersymmetric algebras, and separation of variables.
TEACHING
Taught Statistical Physics I & II, and Advanced Classical Mechanics II in 2013-2018, at Trinity College Dublin (TCD). Also served as a TP course director in 2016-2018 at TCD.
TCD Provost's Teaching Award in 2018.
No ongoing teaching duties, until September 2020.
FUTURE PLANS AND OPPORTUNITIES FOR COLLABORATION
Until September 2020, I won't have teaching load save for potential supervision of projects and some short cycles of lectures. I plan to do research more intensively during this period and to address the following two directions. One strand is to link/contrast the AdS/CFT integrability with a rich world of quantum integrable systems, this would be strongly related to developing of representation theory of relevant quantum algebras, and hence this is a more mathematically-oriented research. The other more physical strand is to use (AdS/CFT) integrable systems as a tool in the computation challenges of quantum field theory, for instance in conformal bootstrap and scattering amplitudes.
To reach these goals, I am currently open for creation of new collaborations. Also, interested young researches (of postdoctoral, PhD, or undergraduate level) are welcome to contact me, we can discuss possible research/project/internship options.
At this moment, there are two related jobs:
- A postdoctoral position at Nordita for 2019-2021 – already filled
- A PhD position at Uppsala commencing in fall 2019: https://inspirehep.net/record/1718719 – application deadline is 01/03/2019
RECENT PUBLICATIONS
See inspirehep.net
Gordon Research Conference on String Theory and Cosmology 2017
Chair: Ulf Danielsson
Venue: Renaissance Tuscany Il Ciocco Lucca (Barga), Italy
Kontakt
- Programansvarig professor och avdelningsföreståndare
- Maxim Zabzine