The threefold way to quantum periods: WKB, TBA equations and q-Painlevé

Authors: Fabrizio Del Monte, Pietro Longhi Preprint number: UUITP-19/23 We show that TBA equations defined by the BPS spectrum of $5d$ $\CN=1$ $SU(2)$ Yang-Mills on $S^1\times \IR^4$ encode the q-Painlev\'e III$_3$ equation. We find a fine-tuned stratum in the physical moduli space of the theory where solutions to TBA equations can be obtained exactly, and verify that they agree with the algebraic solutions to q-Painlev\'e.  Switching from the physical moduli space to that of stability conditions, we identify two one-parameter deformations of the fine-tuned stratum, where  the general solution of the q-Painlev\'e equation in  terms of dual instanton partition functions continues to provide explicit TBA solutions. Motivated by these observations, we propose a further extensions of the range of validity of this correspondence, under a suitable identification of moduli.  As further checks of our proposal, we study the behavior of exact WKB quantum periods for the quantum curve of local $\mathbb{P}^1\times\mathbb{P}^1$.

Ratio 3-2 platshållare

Bildtext

FÖLJ UPPSALA UNIVERSITET PÅ

Uppsala universitet på facebook
Uppsala universitet på Instagram
Uppsala universitet på Youtube
Uppsala universitet på Linkedin