Simon Södergren: Miniaturized fluid system for high-pressure analytics

  • Datum: 5 april 2024, kl. 10.15
  • Plats: Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala
  • Typ: Disputation
  • Respondent: Simon Södergren
  • Opponent: Sami Franssila
  • Handledare: Klas Hjort
  • Forskningsämne: Teknisk fysik med inriktning mot mikrosystemteknik
  • DiVA

Abstract

High-pressure chemistry can be used to determine the contents of blood or water samples and to discover new chemistries. However, working with chemistry at pressures of many tens, or even hundreds, of bars often requires expensive and stationary equipment, such as autoclaves or chromatographic systems like high-performance liquid chromatography (HPLC).

Since the introduction of microfluidics in the '90s, researchers have attempted to develop microfluidic chips as microreactors to speed up synthesis with faster mass and heat transfer. Other researchers have made efforts to create microfluidic chip-based HPLC to reduce the cost, increase the separation quality, speed up the analysis, and even enable portable systems for on-site medical or environmental analysis. Still, fully integrated systems have not yet been realized due to a lack of fluidic control components.

This thesis presents novel methods for on-chip regulation and monitoring of pressure, flow, and temperature. Papers I and II specifically suggest a method for regulating backpressure and stabilizing pressure and flows using thermally controlled restrictors. Furthermore, a collaboration was made where a pressure-regulating chip was connected to an on-chip HPLC. The purpose of this was to activate sample plugs and therefore reduce the requirement for expensive surrounding equipment and enable portability, Paper III. Paper IV explores the use of a pressurized capsule to generate high-pressure flows that are coupled to a pressure-regulating chip to stabilize and regulate the pressure. Finally, an approach for integrating pressure sensors into high-pressure tolerant microchannels has been proposed, Paper V.

The work conducted has provided new insights into fluid dynamics. The regulating method employed in Paper I-IV utilizes a restrictor that alters the pressure drop as temperature changes, hence changing the viscosity of the fluid. Although this technology has been known since before, new understandings have emerged regarding how the compressibility of incompressible fluids must be considered at higher pressures. Additionally, the concept of buffer capacitance is presented, which is central when working with high-pressure microfluidics.

Through this thesis, discoveries of high-pressure microfluidics have been accomplished, which enable micro-total-analysis systems that could serve as portable HPLC equipment.

FÖLJ UPPSALA UNIVERSITET PÅ

facebook
instagram
twitter
youtube
linkedin