Sunghan Kim
Postdoktor vid Matematiska institutionen; Akademisk personal
- Telefon:
- 018-471 31 86
- E-post:
- sunghan.kim@math.uu.se
- Besöksadress:
- Ångströmlaboratoriet, Lägerhyddsvägen 1
- Postadress:
- Box 480
751 06 UPPSALA
Ladda ned kontaktuppgifter för Sunghan Kim vid Matematiska institutionen; Akademisk personal
Postdoktor vid Matematiska institutionen; Analys och partiella differentialekvationer
- Telefon:
- 018-471 31 86
- E-post:
- sunghan.kim@math.uu.se
- Besöksadress:
- Ångströmlaboratoriet, Lägerhyddsvägen 1
- Postadress:
- Box 480
751 06 UPPSALA
Mer information visas för dig som medarbetare om du loggar in.
Kort presentation
Denna text finns inte på svenska, därför visas den engelska versionen.
Overall, my research interests lie in analysis of PDEs and related problems in geometry. More specifically:
- Free boundary problems
- Homogenization problems
- Regularity theory
- Degenerate/singular PDEs
- Semilinear problems
Nyckelord
- analysis
- free boundary problems
- homogenization problems
- parabolic pdes
- partial differential equations
- regularity
- semilinear problems
Biografi
Denna text finns inte på svenska, därför visas den engelska versionen.
Link to my personal webpage: here
Forskning
Denna text finns inte på svenska, därför visas den engelska versionen.
Over the past few years, I have developed great interests in constraint maps, which are a natural extension of the obstacle problem within a vectorial framework. Due to inherent topological constraints, they manifest a diverse structure that includes singularities similar to harmonic maps, branch points reminiscent of minimal surfaces, and intricate free-boundary behavior of the obstacle problem. The complexity of these maps poses significant challenges to their analysis. This has led me to a series of recent collaborations, which address the following fundamental issue: does the free boundary meet the mapping singularities?
- Constraint maps and free boundaries (with A. Figalli, A. Guerra and H. Shahgholian), an expository article, preprint available at arxiv:2411.04110, 2024
- Constraint maps: singularities vs free boundaries (with A. Figalli, A. Guerra and H. Shahgholian),
preprint available at arXiv:2407.21128, 2024 - Constraint maps with free boundaries: the Bernoulli case (with A. Figalli, A. Guerra and H. Shahgholian),
to appear in J. Eur. Math. Soc., preprint available at arXiv:2311.03006, 2023 - Constraint maps with free boundaries: the obstacle case (with A. Figalli and H. Shahgholian),
Arch. Ration. Mech. Anal., 248 (2024) no. 79.
Publikationer
Senaste publikationer
- Constraint Maps with Free Boundaries (2024)
- Higher order interpolative geometries and gradient regularity in evolutionary obstacle problems (2024)
- Almost minimizers to a transmission problem for (p,q)-Laplacian (2024)
- Uniform Integrability in periodic homogenization of fully nonlinear elliptic equations (2023)
- Lipschitz regularity in vectorial linear transmission problems (2022)
Alla publikationer
Artiklar
- Constraint Maps with Free Boundaries (2024)
- Higher order interpolative geometries and gradient regularity in evolutionary obstacle problems (2024)
- Almost minimizers to a transmission problem for (p,q)-Laplacian (2024)
- Uniform Integrability in periodic homogenization of fully nonlinear elliptic equations (2023)
- Lipschitz regularity in vectorial linear transmission problems (2022)
- Uniform Estimates in Periodic Homogenization of Fully Nonlinear Elliptic Equations (2022)
- Nodal sets for broken quasilinear partial differential equations with Dini coefficients (2021)
- Isolated singularities for semilinear elliptic systems with power-law nonlinearity (2020)
- Higher order convergence rates in theory of homogenization II: Oscillatory initial data (2020)
- Homogenization of the boundary value for the Dirichlet problem (2019)
- Nodal sets for "broken" quasilinear pdes (2019)
- Homogenization of a Singular Perturbation Problem (2019)
- Exact behavior around isolated singularity for semilinear elliptic equations with a log-type nonlinearity (2018)
- Higher order convergence rates in theory of homogenization III: Viscous Hamilton–Jacobi equations (2018)
- An elliptic free boundary arising from the jump of conductivity (2017)
- Higher Order Convergence Rates in Theory of Homogenization: Equations of Non-divergence Form (2015)
- Constraint maps with free boundaries
- Constraint maps
- Constraint maps with free boundaries