Kursplan för Algebra och vektorgeometri

Algebra and Vector Geometry

Kursplan

  • 5 högskolepoäng
  • Kurskod: 1MA008
  • Utbildningsnivå: Grundnivå
  • Huvudområde(n) och successiv fördjupning: Matematik G1N

    Förklaring av koder

    Koden visar kursens utbildningsnivå och fördjupning i förhållande till andra kurser inom huvudområdet och examensfordringarna för generella examina:

    Grundnivå
    G1N: har endast gymnasiala förkunskapskrav
    G1F: har mindre än 60 hp kurs/er på grundnivå som förkunskapskrav
    G1E: innehåller särskilt utformat examensarbete för högskoleexamen
    G2F: har minst 60 hp kurs/er på grundnivå som förkunskapskrav
    G2E: har minst 60 hp kurs/er på grundnivå som förkunskapskrav, innehåller examensarbete för kandidatexamen
    GXX: kursens fördjupning kan inte klassificeras.

    Avancerad nivå
    A1N: har endast kurs/er på grundnivå som förkunskapskrav
    A1F: har kurs/er på avancerad nivå som förkunskapskrav
    A1E: innehåller examensarbete för magisterexamen
    A2E: innehåller examensarbete för masterexamen
    AXX: kursens fördjupning kan inte klassificeras.

  • Betygsskala: Underkänd (U), godkänd (3), icke utan beröm godkänd (4), med beröm godkänd (5)
  • Inrättad: 2007-03-19
  • Inrättad av: Teknisk-naturvetenskapliga fakultetsnämnden
  • Reviderad: 2018-08-30
  • Reviderad av: Teknisk-naturvetenskapliga fakultetsnämnden
  • Gäller från: vecka 24, 2019
  • Behörighet: Grundläggande behörighet och Fysik 2, Kemi 1, Matematik 3c eller Fysik B, Kemi A, Matematik D (områdesbehörighet A8/8)
  • Ansvarig institution: Matematiska institutionen

Mål

Efter godkänd kurs ska studenten kunna:

  • lösa enkla algebraiska ekvationer samt använda potens- och logaritmlagar;
  • räkna med komplexa tal;
  • definiera och räkna med de elementära funktionerna;
  • använda vektorer och vektorräkning;
  • lösa linjära ekvationssystem och räkna med matriser.

Innehåll

Elementära funktioner: polynom, rationella funktioner, potens-, exponential- och logaritmfunktioner, trigonometriska funktioner. Potens- och logaritmlagar, trigonometriska formler. Lösning av enkla algebraiska ekvationer.
Komplexa tal på grundform och polär form, geometrisk tolkning. Andragradsekvationer och binomiska ekvationer med komplexa koefficienter.
Vektorer i planet och rummet, vektorräkning, skalär- och vektorprodukt. Räta linjer och plan.
Avståndsberäkning.
Linjära ekvationssystem: Gausselimination, total- och koefficientmatris.
Matriser: matriskalkyl, matrisinvers. Determinanter av ordning 2 och 3. Egenvärden och egenvektorer.

Undervisning

Föreläsningar, lektioner och räkneövningar.

Examination

Skriftlig tentamen vid kursens slut (4 hp) kombinerat med inlämningsuppgifter (1 hp). 

Om särskilda skäl finns får examinator göra undantag från det angivna examinationssättet och medge att en enskild student examineras på annat sätt. Särskilda skäl kan t.ex. vara besked om särskilt pedagogiskt stöd från universitetets samordnare för studenter med funktionsnedsättning.

Övriga föreskrifter

Kursen kan inte tillgodoräknas i examen tillsammans med någon av kurserna Baskurs i matematik och Linjär algebra och geometri.

Litteratur

Litteraturlista

Gäller från: vecka 01, 2019

  • Rodhe, Staffan; Sollervall, Håkan Matematik för ingenjörer

    6. uppl.: Lund: Studentlitteratur, 2010

    Se bibliotekets söktjänst

    Obligatorisk