Kursplan för Envariabelanalys

Single Variable Calculus

Kursplan

  • 10 högskolepoäng
  • Kurskod: 1MA013
  • Utbildningsnivå: Grundnivå
  • Huvudområde(n) och successiv fördjupning: Matematik G1F

    Förklaring av koder

    Koden visar kursens utbildningsnivå och fördjupning i förhållande till andra kurser inom huvudområdet och examensfordringarna för generella examina:

    Grundnivå
    G1N: har endast gymnasiala förkunskapskrav
    G1F: har mindre än 60 hp kurs/er på grundnivå som förkunskapskrav
    G1E: innehåller särskilt utformat examensarbete för högskoleexamen
    G2F: har minst 60 hp kurs/er på grundnivå som förkunskapskrav
    G2E: har minst 60 hp kurs/er på grundnivå som förkunskapskrav, innehåller examensarbete för kandidatexamen
    GXX: kursens fördjupning kan inte klassificeras.

    Avancerad nivå
    A1N: har endast kurs/er på grundnivå som förkunskapskrav
    A1F: har kurs/er på avancerad nivå som förkunskapskrav
    A1E: innehåller examensarbete för magisterexamen
    A2E: innehåller examensarbete för masterexamen
    AXX: kursens fördjupning kan inte klassificeras.

  • Betygsskala: Underkänd (U), godkänd (3), icke utan beröm godkänd (4), med beröm godkänd (5)
  • Inrättad: 2007-03-19
  • Inrättad av: Teknisk-naturvetenskapliga fakultetsnämnden
  • Reviderad: 2018-10-30
  • Reviderad av: Teknisk-naturvetenskapliga fakultetsnämnden
  • Gäller från: vecka 30, 2019
  • Behörighet: En av kurserna Baskurs i matematik, Algebra och vektorgeometri eller Algebra och geometri (dessa får läsas parallellt med 1MA013).
  • Ansvarig institution: Matematiska institutionen

Mål

Efter godkänd kurs ska studenten kunna

* redogöra för begreppen gränsvärde, kontinuitet, derivata och integral;
* använda deriveringsreglerna och kunna använda sig av derivatan för beräkning av extremvärden;
* återge ett antal standardgränsvärden och använda dem för gränsvärdesberäkningar;
* använda olika integrationstekniker för att beräkna integraler;
* använda integraler för beräkning av areor, volymer och båglängder;
* redogöra för och använda grundläggande begrepp inom teorin för oändliga serier;
* beräkna elementära funktioners Taylorutveckling;
* lösa linjära differentialekvationer med konstanta koefficienter, linjära differentialekvationer av första ordningen med hjälp av integrerande faktor samt separabla differentialekvationer;
* exemplifiera och tolka viktiga begrepp i konkreta situationer;
* översätta problem från relevanta tillämpningsområden till för matematisk behandling lämplig form;
* presentera matematiska resonemang för andra.

Innehåll

Funktioner: monotonitet och invers. Inverserna till de trigonometriska funktionerna. Gränsvärde och kontinuitet: begrepp och räkneregler. Derivata: begrepp, räkneregler, kedjeregeln, medelvärdessatsen med tillämpningar. Extremvärdesproblem. Kurvritning. Integral: bestämd integral, primitiv funktion, integralkalkylens fundamentalsats. Integrationsteknik: substitutioner, partiell integration, integralen till rationella funktioner. Generaliserade integraler. Integrationstillämpningar: areor, volymer och båglängder. Taylors formel med tillämpningar.
Numeriska serier: konvergensbegreppet, konvergenskriterier för positiva serier, absolutkonvergens.
Konvergenskriterier för generaliserade integraler. Potensserier. Ordinära differentialekvationer: lösningsbegreppet, existens och entydighet. Linjära differentialekvationer med konstanta koefficienter. Lösbara typer av differentialekvationer: separabla differentialekvationer och integrerande faktor.

Undervisning

Föreläsningar, lektioner och räkneövningar. Redovisningsuppgifter.

Examination

Skriftligt prov vid kursens slut (8 hp). Skriftliga och muntliga redovisningsuppgifter (2 hp).

Övriga föreskrifter

Kursen kan inte tillgodoräknas i examen tillsammans med någon av kurserna Derivator och integraler, Serier och ordinära differentialekvationer och Funktionslära för ingenjörer.

Litteratur

Litteraturlista

Gäller från: vecka 01, 2019

  • Adams, Robert A.; Essex, Christopher Calculus : a complete course

    9. ed.: Toronto: Pearson Addison Wesley, 2017

    Se bibliotekets söktjänst

    Obligatorisk