Kursplan för Beräkningsvetenskap II

Scientific Computing II

Det finns en senare version av kursplanen.

Kursplan

  • 5 högskolepoäng
  • Kurskod: 1TD395
  • Utbildningsnivå: Grundnivå
  • Huvudområde(n) och successiv fördjupning: Datavetenskap G1F, Teknik G1F

    Förklaring av koder

    Koden visar kursens utbildningsnivå och fördjupning i förhållande till andra kurser inom huvudområdet och examensfordringarna för generella examina:

    Grundnivå

    • G1N: har endast gymnasiala förkunskapskrav
    • G1F: har mindre än 60 hp kurs/er på grundnivå som förkunskapskrav
    • G1E: innehåller särskilt utformat examensarbete för högskoleexamen
    • G2F: har minst 60 hp kurs/er på grundnivå som förkunskapskrav
    • G2E: har minst 60 hp kurs/er på grundnivå som förkunskapskrav, innehåller examensarbete för kandidatexamen
    • GXX: kursens fördjupning kan inte klassificeras

    Avancerad nivå

    • A1N: har endast kurs/er på grundnivå som förkunskapskrav
    • A1F: har kurs/er på avancerad nivå som förkunskapskrav
    • A1E: innehåller examensarbete för magisterexamen
    • A2E: innehåller examensarbete för masterexamen
    • AXX: kursens fördjupning kan inte klassificeras

  • Betygsskala: Underkänd (U), godkänd (3), icke utan beröm godkänd (4), med beröm godkänd (5)
  • Inrättad: 2007-03-15
  • Inrättad av: Teknisk-naturvetenskapliga fakultetsnämnden
  • Reviderad: 2018-02-27
  • Reviderad av: Teknisk-naturvetenskapliga fakultetsnämnden
  • Gäller från: VT 2018
  • Behörighet:

    Beräkningsvetenskap I. Grundkurs i matematisk statistik rekommenderas.

  • Ansvarig institution: Institutionen för informationsteknologi

Mål

Efter godkänd kurs ska studenten kunna:

  • redogöra för och utföra uppgifter som kräver kännedom om de nyckelbegrepp som ingår i kursen;
  • beskriva och använda de algoritmer som ingår i kursen;
  • undersöka egenskaper hos beräkningsalgoritmer och matematiska modeller med hjälp av de analysförfaranden som ingår i kursen;
  • värdera egenskaper hos beräkningsalgoritmer och matematiska modeller samt utgående från sådan värdering argumentera för metoders lämplighet givet olika tillämpningsproblem;
  • lösa problem inom naturvetenskap och teknik genom att strukturera problemet i delproblem och använda programvara, inklusive egen kod, på ett effektivt och generellt sätt;
  • presentera, förklara, sammanfatta, värdera och diskutera lösningsmetoder och resultat i en mindre rapport.

Innehåll

Programmering i MATLAB och problemlösningsmetodik.

Lösning av ordinära differentialekvationer (begynnelsevärdesproblem). Adaptivitet. Stabilitet. Explicita och implicita metoder. Olika metoders noggrannhet och noggrannhetsordning. Monte Carlo-metoder och metoder baserade på slumptal, stokastiska modeller, stokastisk simulering, stokastiska differentialekvationer, inverse transform sampling.

I kursen ingår följande nyckelbegrepp: diskretisering och diskretiseringsfel (trunkeringsfel), noggrannhet och noggrannhetsordning, lokalt och globalt fel, effektivitet, stabilitet och instabilitet, adaptivitet, styv respektive icke-styv ordinär differentialekvation, deterministisk respektive stokastisk modell och metod.

Undervisning

Föreläsningar, lektioner/workouts, laborationer, obligatoriska inlämningsuppgifter/miniprojekt.

Examination

Skriftligt prov (3 hp) samt skriftlig rapport på miniprojekt (2 hp).

Litteratur

Litteraturlista

Gäller från: VT 2018

I bibliotekets söktjänst kan du se om en titel finns elektroniskt.

  • Chapra, Steven C. Applied numerical methods with MATLAB for engineers and scientists

    3. international ed.: Boston: McGraw-Hill Higher Education, 2012

    Se bibliotekets söktjänst

    Obligatorisk

Kompendium: Andreas Hellander: Stochastic Simulation and Monte Carlo Methods. TDB, 2009