Electromagnetic Field Theory

5 credits

Syllabus, Master's level, 1FA252

A revised version of the syllabus is available.
Education cycle
Second cycle
Main field(s) of study and in-depth level
Physics A1N, Technology A1N
Grading system
Fail (U), Pass (3), Pass with credit (4), Pass with distinction (5)
Finalised by
The Faculty Board of Science and Technology, 6 May 2013
Responsible department
Department of Physics and Astronomy

Entry requirements

120 credits with Electromagnetism II and Mathematical Methods of Physics.

Learning outcomes

On completion of the course the student shall be able to:

- formulate potential problems within electrostatics, magnetostatics and stationary current distributions in linear, isotropic media, and also solve such problems in simple geometries using separation of variables and the method of images

- define and derive expressions for the energy both for the electrostatic and magnetostatic fields, and derive Poyntings theorem from Maxwells equations and interpret the terms in the theorem physically

- describe and make calculations of plane electromagnetic waves in homogeneous media, including reflexion of such waves in plane boundaries between homogeneous media


Repetition of vector analysis. Repetition of the electrostatic and magnetostatic fields, including the polarisation field in dielectrics and the magnetisation field in magnetisable media. Potential theory (boundary value problems, uniqueness theorem, method of images, separation of variables) with applications in electrostatics, magnetostatics and stationary current distributions. Induction law and displacement current. Transformation of the electromagnetic field. Maxwells equations. Poyntings theorem. Wave equation, plane waves and a brief description of waves along different types of wave guides. Field penetration in conducting media. Skin depth. Generation of electromagnetic radiation (inhomogeneous wave equation, retarded potentials). Electric dipole radiation field. Derivation of circuit equations (Kirchoff's laws) from Maxwells equations.


Lectures and lessons. Guest lecture.


Written examination at the end of the course.

Half-time examination which can give bonus points that can be used at the examination and the regular re-examinations.