Syllabus for Fourier Analysis
Fourieranalys
A revised version of the syllabus is available.
Syllabus
- 5 credits
- Course code: 1MA211
- Education cycle: First cycle
-
Main field(s) of study and in-depth level:
Mathematics G1F
Explanation of codes
The code indicates the education cycle and in-depth level of the course in relation to other courses within the same main field of study according to the requirements for general degrees:
First cycle
- G1N: has only upper-secondary level entry requirements
- G1F: has less than 60 credits in first-cycle course/s as entry requirements
- G1E: contains specially designed degree project for Higher Education Diploma
- G2F: has at least 60 credits in first-cycle course/s as entry requirements
- G2E: has at least 60 credits in first-cycle course/s as entry requirements, contains degree project for Bachelor of Arts/Bachelor of Science
- GXX: in-depth level of the course cannot be classified
Second cycle
- A1N: has only first-cycle course/s as entry requirements
- A1F: has second-cycle course/s as entry requirements
- A1E: contains degree project for Master of Arts/Master of Science (60 credits)
- A2E: contains degree project for Master of Arts/Master of Science (120 credits)
- AXX: in-depth level of the course cannot be classified
- Grading system: Fail (U), Pass (3), Pass with credit (4), Pass with distinction (5)
- Established: 2012-03-08
- Established by:
- Revised: 2019-02-19
- Revised by: The Faculty Board of Science and Technology
- Applies from: Autumn 2019
-
Entry requirements:
Several Variable Calculus or Geometry and Analysis III, and Linear Algebra II.
- Responsible department: Department of Mathematics
Learning outcomes
On completion of the course, the student should be able to
- account for basic concepts and theorems within the Fourier analysis;
- demonstrate basic numeracy skill concerning the concepts in the previous point;
- use the numeracy skill at the solution of mathematical and physical problems formulated as ordinary or partial differential equations.
Content
Fourier series in complex and trigonometric form. Pointwise and uniform convergence. The Dirichlet kernel. Summability methods. L^2-theory: Orthogonality, completeness, ON systems. Applications to partial differential equations. Separation of variables. Distributions.
The Fourier transform and its properties. Convolution. The inversion formula. The Plancherel theorem.
The Laplace transform and its properties. Convolution. Applications to initial value problems and
integral equations.
Instruction
Lessons in large and small groups.
Assessment
Written examination at the end of the course.
If there are special reasons for doing so, an examiner may make an exception from the method of assessment indicated and allow a student to be assessed by another method. An example of special reasons might be a certificate regarding special pedagogical support from the disability coordinator of the university.
Other directives
The course may not be included in higher education qualification together with Fourier Analysis (1MA035), 5 credits.
Syllabus Revisions
- Latest syllabus (applies from Autumn 2023)
- Previous syllabus (applies from Autumn 2022, version 2)
- Previous syllabus (applies from Autumn 2022, version 1)
- Previous syllabus (applies from Autumn 2019)
- Previous syllabus (applies from Spring 2019)
- Previous syllabus (applies from Autumn 2012, version 2)
- Previous syllabus (applies from Autumn 2012, version 1)
Reading list
Reading list
Applies from: Autumn 2019
Some titles may be available electronically through the University library.
-
Vretblad, Anders
Fourier analysis and its applications
New York: Springer, 2003
-
Lindahl, Lars-Åke
Fourieranalys
Matematiska institutionen, 2010