Syllabus for Advanced Particle Physics

Partikelfysik II

A revised version of the syllabus is available.

Syllabus

  • 10 credits
  • Course code: 1FA355
  • Education cycle: Second cycle
  • Main field(s) of study and in-depth level: Physics A1F

    Explanation of codes

    The code indicates the education cycle and in-depth level of the course in relation to other courses within the same main field of study according to the requirements for general degrees:

    First cycle
    G1N: has only upper-secondary level entry requirements
    G1F: has less than 60 credits in first-cycle course/s as entry requirements
    G1E: contains specially designed degree project for Higher Education Diploma
    G2F: has at least 60 credits in first-cycle course/s as entry requirements
    G2E: has at least 60 credits in first-cycle course/s as entry requirements, contains degree project for Bachelor of Arts/Bachelor of Science
    GXX: in-depth level of the course cannot be classified.

    Second cycle
    A1N: has only first-cycle course/s as entry requirements
    A1F: has second-cycle course/s as entry requirements
    A1E: contains degree project for Master of Arts/Master of Science (60 credits)
    A2E: contains degree project for Master of Arts/Master of Science (120 credits)
    AXX: in-depth level of the course cannot be classified.

  • Grading system: Fail (U), Pass (3), Pass with credit (4), Pass with distinction (5)
  • Established: 2010-03-18
  • Established by:
  • Revised: 2018-08-30
  • Revised by: The Faculty Board of Science and Technology
  • Applies from: week 30, 2019
  • Entry requirements: 120 credits with Particle Physics and Quantum Field Theory.
  • Responsible department: Department of Physics and Astronomy

Learning outcomes

On completion of the course, the student should be able to:

  • account for the Standard Model of particle physics and its experimental verification
  • account for the limitations of the Standard Model and need for going beyond it with major ideas on new physics and how one may search for it experimentally
  • analyse particle physics processes based on the Standard Model and Feynman diagrams
  • account for the major types of particle physics experiments and their main detectors
  • account for connections to astrophysics and cosmology

Content

- Experimental and theoretical aspects of modern particle physics in terms of fundamental matter particles (quarks and leptons) and force quanta (photon, W±, Z0, gluons).
- The gauge theory of electroweak and strong interactions, i.e. the Standard Model.
- Use of Feynman diagrams to understand basic processes and calculate cross-sections (by hand or using computer methods).
- Experimental state-of-the-art techniques used in today's experiments.
- Experimental verification of the Standard Model and its particle content.
- Discoveries of new phenomena (e.g. CP violation and neutrino oscillations) and searches for new physics related to unsolved problems and limitations of the Standard Model.
- Introduction to Supersymmetry and other theories beyond the Standard Model.
- Prospects for discoveries of new phenomena, e.g. in LHC-experiments at CERN.
- Introduction to particle astrophysics with connections to cosmology.

Instruction

Lectures, exercises for problem solving, seminars.

Assessment

Seminars (3 c), hand-in exercises (2 c) and final examination (5 c).

If there are special reasons for doing so, an examiner may make an exception from the method of assessment indicated and allow a student to be assessed by another method. An example of special reasons might be a certificate regarding special pedagogical support from the disability coordinator of the university.

Reading list

Reading list

Applies from: week 30, 2019

Some titles may be available electronically through the University library.

  • Tully, Christopher G. Elementary particle physics in a nutshell

    Princeton: Princeton University Press, c2011

    Find in the library

    Mandatory