Quantum Physics

10 credits

Syllabus, Bachelor's level, 1FA521

A revised version of the syllabus is available.
Code
1FA521
Education cycle
First cycle
Main field(s) of study and in-depth level
Physics G2F
Grading system
Fail (U), Pass (3), Pass with credit (4), Pass with distinction (5)
Finalised by
The Faculty Board of Science and Technology, 13 October 2022
Responsible department
Department of Physics and Astronomy

Entry requirements

60 credits including Mechanics II/KF. Participation in Transform Methods/Fourier Analysis, Electromagnetism I/Electromagnetism, Waves and Optics and Mathematical Methods of Physics that can be taken in parallel. Knowledge in special relativity (from e.g. Mechanics III, which can be taken in parallel, or Astrophysics I).

Learning outcomes

On completion of the course, the student should be able to:

  • account for the concepts, language and formalism of basic quantum mechanics.
  • do basic theoretical studies and calculations for quantum systems using the Schrödinger equation.
  • calculate basic properties of atoms and molecules and electron physics using quantum physics.
  • carry out spectroscopic studies of different elements and interpret the results.
  • describe the importance of quantum physics in nature, engineering and society.
  • orally present the results of experimental investigations and discuss their quantum mechanical interpretation.

Content

The experimental background of quantum physics, particles and atomic models, the photon, the photoelectric effect, Compton scattering the double slit experiment, black body radiation, the spectrum of hydrogen-like atoms. The correspondence principle. Wave-particle duality, probabilities, wave functions, the Schrödinger equation, wave packets. Expectation values, operators, uncertainty relations. Dirac formalism.

One-dimensional systems, stationary states, the infinite square well, the harmonic oscillator, transmission, tunneling and reflection. Three-dimensional systems, the hydrogen atom and one-electron atoms, angular momentum and central motion, transitions, energy level diagrams the Born-Oppenheimer approximation. Time-independent perturbation theory, the variational principle. Many-electron atoms. Spin, addition of angular momentum, identical particles, fermions and bosons, the Pauli principle, electron configurations, the Zeeman effect, spin-orbit coupling, the central field approximation, screening, fine structure, the periodic system, optical transitions and X-rays, spectroscopy.

Diatomic molecules: binding, vibrational and rotational motion, transitions.

The importance of quantum physics for science, engineering and society.

Instruction

Lectures, exercise classes and, laboratory experiments. Guest lecture. The course makes use of subject integrated communication training with feedback and self evaluation.

Assessment

Written examination at the end of the course (9 credits) and hand-in problems. The hand-in problems can give bonus points that can be used on the final exam and the regular re-exams. Laboratory exercises with an oral presentation (1 credit).

If there are special reasons for doing so, an examiner may make an exception from the method of assessment indicated and allow a student to be assessed by another method. An example of special reasons might be a certificate regarding special pedagogical support from the disability coordinator of the university.

FOLLOW UPPSALA UNIVERSITY ON

facebook
instagram
twitter
youtube
linkedin