Master's Programme in Image Analysis and Machine Learning

120 credits

Programme syllabus, TBA2M

Code
TBA2M
Finalised by
The Faculty Board of Science and Technology, 6 November 2023
Registration number
TEKNAT 2023/166
Responsible faculty
Faculty of Science and Technology
Responsible department
Department of Information Technology

Decisions and guidelines

According to a decision taken by the Vice Chancellor 2019-06-18, Uppsala University will offer a Master's Programmes in Image Analysis and Machine Learning from 2020-07-01.

Entry requirements

Academic requirements

A Bachelor's degree, equivalent to a Swedish Kandidatexamen, from an internationally recognised university.

Also required is:

  • 80 credits in mathematics and computer science; out of which
  • 30 credits in mathematics including linear algebra, single variable calculus, statistics and probability; and in addition
  • 30 credits in computer science including 5 credits in introductory programming.

Language requirements

Proficiency in English equivalent to the Swedish upper secondary course English 6. This requirement can be met either by achieving the required score on an internationally recognised test, or by previous upper secondary or university studies in some countries. Detailed instructions on how to provide evidence of your English proficiency are available at universityadmissions.se.

Aims

The Master's Programme in Image Analysis and Machine Learning focuses on the latest groundbreaking advances in image analysis and processing, which are based on modern methods of deep and machine learning developed for visual data. The programme aims to meet the increased need for knowledge and skills in this particular combination of subjects and defines a new professional profile that corresponds to the growing shortage of expertise in analysis, processing and interpretation of images and video that prevails in both academia and industry. The programme paves the way for a career in industry, in many companies that are in need of skills in deep and machine learning, as well as image and video analysis, or in academia and other research-intensive workplaces.

The programme consists of a carefully selected combination of courses that provide both a strong theoretical foundation and an ability to apply this knowledge in practice. The programme offers courses, project work, and specializations, in collaboration with industrial and academic partners. This provides the conditions for relating acquired knowledge and skills to relevant and current problems in both research and industry.

Learning outcomes

According to the Higher Education Act, the following applies for second-cycle studies:

Second-cycle studies shall be based fundamentally on the knowledge acquired by students during first-cycle courses and study programmes, or its equivalent. Second-cycle studies shall involve the acquisition of specialist knowledge, aptitudes and accomplishments in relation to first-cycle courses and study programmes, and in addition to the requirements for first-cycle courses and study programmes shall:

  • further develop the ability of students to integrate and make autonomous use of their knowledge,
  • develop the students' ability to deal with complex phenomena, issues and situations, and
  • develop the students' potential for professional activities that demand considerable autonomy, or for research and development work. Ordinance (2006:173).

Objectives for a Degree of Master (120 credits) according to the Higher Education Ordinance, System of Qualifications.

Knowledge and understanding

For a Degree of Master (120 credits) students must:

  • demonstrate knowledge and understanding in their main field of study, including both broad knowledge in the field and substantially deeper knowledge of certain parts of the field, together with deeper insight into current research and development work; and
  • demonstrate deeper methodological knowledge in their main field of study.

For the Master's Programme in Image Analysis and Machine Learning at Uppsala University, this means that students should:

  • demonstrate knowledge and understanding of principles, methods, and algorithms for image analysis and machine learning, their application and limitations;
  • demonstrate in-depth methodological knowledge within image analysis and machine learning and in one of the program's specialization areas.

Skills and abilities

For a Degree of Master (120 credits) students must:

  • demonstrate an ability to critically and systematically integrate knowledge and to analyse, assess and deal with complex phenomena, issues and situations, even when limited information is available;
  • demonstrate an ability to critically, independently and creatively identify and formulate issues and to plan and, using appropriate methods, carry out advanced tasks within specified time limits, so as to contribute to the development of knowledge and to evaluate this work;
  • demonstrate an ability to clearly present and discuss their conclusions and the knowledge and arguments behind them, in dialogue with different groups, orally and in writing, in national and international contexts; and
  • demonstrate the skill required to participate in research and development work or to work independently in other advanced contexts.

For the Master's Programme in Image Analysis and Machine Learning at Uppsala University, this means that the students should:

  • demonstrate the ability to integrate theory and methodology of image analysis and machine learning, and to use, compare, and evaluate different models in realistic problem situations;
  • demonstrate the ability to critically, independently and creatively identify and formulate problems where image analysis and machine learning can be applied, to plan and execute advanced tasks within a given framework, and to use appropriate mathematical models, tools and software;
  • demonstrate the ability to clearly present, explain, and discuss - orally and in writing - advanced topics in machine learning and image analysis, in dialogue with different groups;
  • demonstrate skills required to participate in research and development or to work independently in other advanced contexts, utilizing competence from the subject areas of machine learning and image analysis.

Judgement and approach

For a Degree of Master (120 credits) students must:

  • demonstrate an ability to make assessments in their main field of study, taking into account relevant scientific, social and ethical aspects, and demonstrate an awareness of ethical aspects of research and development work;
  • demonstrate insight into the potential and limitations of science, its role in society and people's responsibility for how it is used; anddemonstrate an ability to identify their need of further knowledge and to take responsibility for developing their knowledge.

For the Master's Programme in Image Analysis and Machine Learning at Uppsala University, this means that the students should:

  • demonstrate the ability to make judgments with regard to relevant scientific, social and ethical aspects of applications of machine learning and image analysis, and demonstrate awareness of ethical aspects of research and development in the subject;
  • demonstrate insight into the possibilities and limitations of machine learning and image analysis, its role in society and people's responsibility for how they are applied;
  • demonstrate ability to identify own needs for further knowledge in the field of machine learning and image analysis and to take responsibility for their own learning and development.

Layout of the programme

The programme starts by providing students with different backgrounds a common foundation, as well as basic knowledge in digital image analysis, which is one of the programme's two pillars. It continues with introducing basics of machine learning, which is the second pillar the programme. These two subjects define, at an early stage, the identity of the programme, which is further developed and deepened by the education on deep machine learning which also clarifies the strong link between machine learning and modern image processing and analysis. A course in ethics is included in the programme at an early stage. Courses that provide deepening and progression towards specialisations and where the subjects image analysis and machine learning are linked together and form the programme's main area follow. Students are given a possibility to specialize within one of the following application fields where the combination of image analysis and machine learning has a central role and where they can further develop their ability to apply in practice acquired theoretical knowledge:

  • Specialisation in Image Analysis and Machine Learning for Biomedical Applications
  • Specialisation in Image Analysis and Machine Learning for Social Robotics

In a project-based course that integrates a range of competencies and skills, such as oral and written presentation, group collaboration, problem solving, ethical considerations, scheduling and project management, students may carry out a well-defined but realistic and challenging project focused on industrial needs or research. The Master's programme ends with an independent work where acquired knowledge is applied in a relevant project at a company or academic research unit.

Instruction

The master's programme builds on the experience and knowledge that the students bring into the education. Students are expected to participate in teaching and actively contribute to it, as well as to take a significant responsibility for their own, and for their fellow students' learning. The teachers have main responsibility for creating conditions favouring active individual and joint learning. The teaching approach is designed and developed continuously through a respectful dialogue between teachers and students, where everyone contributes to the renewal and mutual learning.

The programme supports student-active and student-centred learning. The courses combine several different forms of teaching, such as lectures, practical assignments, seminars, communication training, study visits and project work. A large part of the learning takes the form of practical exercises and project assignments, where the students themselves take an active role in their own and their fellow students' learning. These practical parts are supplemented by lectures and seminars aimed at a deeper theoretical understanding of the lessons learned in the practical parts. The students are given concrete experience of combining theoretical understanding with practical problem solving in order to be able to meet the requirements of industrial and academic careers after graduation. The teaching is closely related and inspired by current research, which gives a good insight into the scientific approaches and work. The teaching and course literature is in English.

Degree

Upon request, the Vice Chancellor issues diplomas for the Master of Science (120 credits) with Image Analysis and Machine Learning as the main field of study.

A Degree of Master is a so called general degree, which means that the student achieve the degree in its main subject according to the criteria below, regardless of the courses being part of the program or not, therefore there is a possibility also to include single subject courses in the degree.

Regulations according to Higher Education Ordinance

A Degree of Master (120 credits) is obtained after the student has completed course requirements of 120 higher education credits with a certain area of specialisation determined by each higher education institution itself, including at least 60 higher education credits with in-depth studies in the main field of study. In addition, the student must hold a Degree of Bachelor, a Degree of Bachelor of Arts in…, a professional degree worth at least 180 higher education credits or an equivalent foreign qualification.

For a Degree of Master (120 credits) students must have completed an independent project (degree project) worth at least 30 higher education credits in their main field of study.

Local regulations

A degree of Master (120 credits) may, except for courses on advanced level, contain one or several courses on basic level comprising not more than 30 higher education credits. The course or the courses are meant to provide such additional competence as is needed for in-depth studies in the main field of study and cannot be included in the student's basic degree.

For a Degree of Master (120 credits) students must have completed an independent project (degree project) worth at least 30 higher education credits.

Other directives

In order to be admitted to a later part of the programme the student must:

  • fulfil the general and specific entry requirements for the programme.
  • have 15 credits of courses relevant to the programme, at Master's (advanced) level, in addition to the Bachelor's degree.
  • have sufficient prior knowledge to be able to follow the programme at the level at which the student is admitted, which means that the student is able to study at least 15 credits from the programme outline (for the semester to which the student is admitted). The other 15 credits are specified in the individual study plan.

All points above must be satisfied, and the courses completed (modules do not count), at the latest by the deadline for supporting documentation of qualifications (see below). Students can only be admitted to a later part of a programme or a specialisation within a programme if there are available places in the programme in the semester in question.

An individual study plan for the first semester should be established by the programme study counsellor.

For studies starting the autumn semester the application period is 15 March - 15 April. Supporting documentation of qualification for the application may be submitted no later than 1 June (for autumn semester). For studies starting the spring semester the application period is 15 September - 15 October. Supporting documentation of qualification for the application may be submitted not later than 1 December (for spring semester). If the specified dates for the application deadline or completion date fall on a public holiday, the deadline is postponed to the nearest weekday. After the last application day, it is possible to submit a late application until the 1 June (for autumn semester) and 1 December (for spring semester). Late applications will be handled in the order they are received.

If the number of applicants is larger than the number of available places according to the dimensioning applicable, the selection criterion of average grade on prerequisite courses from a higher education institution (courses relevant to the programme) is used.

FOLLOW UPPSALA UNIVERSITY ON

facebook
instagram
twitter
youtube
linkedin