Gravitation and Cosmology
Syllabus, Master's level, 1FA157
- Code
- 1FA157
- Education cycle
- Second cycle
- Main field(s) of study and in-depth level
- Physics A1F
- Grading system
- Pass with distinction (5), Pass with credit (4), Pass (3), Fail (U)
- Finalised by
- The Faculty Board of Science and Technology, 18 March 2010
- Responsible department
- Department of Physics and Astronomy
Entry requirements
120 credits with Undergraduate courses in Mechanics III, Quantum
physics, Thermodynamics, Statistical mechanics, Analytical mechanics and theory of special relativity. Mathematical methods of physics or similar.
Learning outcomes
After completing the course the student shall be able to
- explain and describe the equivalence principle
- explain the concept of a metric and solve geodesic equations
- analyse and solve Einstein's equations for many situations
- describe the concepts within the standard cosmological model, such as the expanding universe, the cosmic microwave background radiation and dark matter.
- describe and analyse different models of inflation.
Content
The course is an introduction to general relativity with applications to cosmology. Connections with modern research are emphasised throughout the course in order to bring the student up to date with the scientific frontline.
The first part of the course introduces general relativity; its mathematical basis in the form of Einstein's equations and the mathematics of curved space-time, metrics, curvature tensors and geodesics; the equivalence principle; classical tests of the theory such as the bending of light and the precession of the perihelion of Mercury; gravitational waves. The mathematical description of black holes in the form of the Schwarzchild metric with an analysis of its horizon and singularity. Kerr and Reissner-Nordström black holes.
The course's second part treats applications within cosmology. The mathematical description of the Robertson-Walker metric. The Big Bang, the expanding universe with a cosmological constant, dark matter, the cosmic microwave background radiation and inflation will be analysed and discussed.
Instruction
Lectures and lessons.
Assessment
Written examination at the end of the course.