Elementary Particle Physics

5 credits

Syllabus, Master's level, 1FA347

A revised version of the syllabus is available.
Education cycle
Second cycle
Main field(s) of study and in-depth level
Physics A1N
Grading system
Fail (U), Pass (3), Pass with credit (4), Pass with distinction (5)
Finalised by
The Faculty Board of Science and Technology, 19 April 2016
Responsible department
Department of Physics and Astronomy

Entry requirements

120 credits and basic knowledge of quantum mechanics (quantum physics) and Theory of Special Relativity (Lorentz transformations).

Learning outcomes

When the course is completed the student should be able to

  • classify elementary particles and their reactions in terms of quantum numbers and draw simple reaction diagrams (Feynman diagrams)
  • describe the basic ingredients of the Standard Model of particle physics
  • explain how experimental results are interpreted in terms of fundamental properties of quarks, leptons and force mediators
  • master relativistic kinematics for computations of the outcome of various reactions and decay processes
  • use the concept "invariant mass" to compute particle production
  • describe the technological requirements of particle physics and discuss technology transfer to society
  • independently identify key aspects of a topic relevant to particle physics and present them to his/her peers.


The course provides an overview of modern particle physics stressing fundamental concepts and processes:

An introduction to the Standard Model of particle physics. . Antiparticles. Symmetries and conservation laws and their significance in particle physics. Hadron-hadron interactions. The quark model including spectroscopy. Quantum Chromo-Dynamics (QCD). Electromagnetic interactions - form factors. The parton model and deep inelastic scattering - structure functions. Weak interactions including beta decay and Cabbibo- Kobayashi-Maskawa mixing. The unified electroweak interaction, W, Z and the Higgs boson. Beyond the Standard Model: the unification of strong and electroweak interaction, supersymmetry, neutrino oscillations and more.

Techniques for particle acceleration and particle detection will be presented. Discussion about innovation, collaboration with industry, technology transfer and aspects of work within large international teams.


Lectures, lessons, seminar, student presentations of mini-projects about a particle physics topic.


Written examination at the end of the course, hand-in problems and seminar (4 credits). Oral student project presentation (1 credit).