Scientific Visualisation
Syllabus, Master's level, 1MD140
- Code
- 1MD140
- Education cycle
- Second cycle
- Main field(s) of study and in-depth level
- Computational Science A1N, Computer Science A1N, Image Analysis and Machine Learning A1N
- Grading system
- Pass with distinction (5), Pass with credit (4), Pass (3), Fail (U)
- Finalised by
- The Faculty Board of Science and Technology, 4 February 2022
- Responsible department
- Department of Information Technology
Entry requirements
120 credits including a basic course in programming. Proficiency in English equivalent to the Swedish upper secondary course English 6.
Learning outcomes
On completion of the course, the student should be able to:
- characterize the nature of datasets and the properties of the visual display medium,
- describe the data- and process-flow to transform data and information into visual representations,
- explain visualisation methods and techniques for graphical representation of the most common types of data,
- use and program interactive software for various visualisation techniques,
- assess computer-generated visualisations by drawing upon design principles and theories about the human visual system,
- identify appropriate visualisation strategies and justify the chosen approaches.
Content
Classification of data and properties of visual displays. The visualisation process pipeline including classical algorithms for rendering. Visualisation techniques for discrete and continuous data (scalar, vector, tensor fields) in 1D, 2D, and 3D spatial domains. Visualisation techniques for independent quantitative observations (amounts, proportions, frequencies, associations), data in multiple categories, and relations. Relevant aspects of human visual perception and cognition. Evaluation approaches in visualisation.
The course includes projects using software for advanced visualisations.
Instruction
Lectures, computer exercises and project work.
Assessment
Written test (3 credits). Assignments (2.5 credits). Project (2 credits).
If there are special reasons for doing so, an examiner may make an exception from the method of assessment indicated and allow a student to be assessed by another method. An example of special reasons might be a certificate regarding special pedagogical support from the disability coordinator of the university.
Other directives
The course cannot be included in the same degree as 1TD389 Scientific Visualisation.