Philip Harrison
Gästforskare vid Institutionen för farmaceutisk biovetenskap; Forskning; Farmaceutisk bioinformatik
- Besöksadress:
- Biomedicinskt centrum BMC, Husargatan 3
- Postadress:
- Box 591
751 24 UPPSALA
- ORCID:
- 0000-0003-4046-9017

Publikationer
Senaste publikationer
Combining molecular and cell painting image data for mechanism of action prediction
Ingår i Artificial Intelligence in the Life Sciences, s. 100060-100060, 2023
Evaluating the utility of brightfield image data for mechanism of action prediction
Ingår i PloS Computational Biology, 2023
- DOI för Evaluating the utility of brightfield image data for mechanism of action prediction
- Ladda ner fulltext (pdf) av Evaluating the utility of brightfield image data for mechanism of action prediction
Combining molecular and cell painting image data for mechanism of action prediction
Ingår i ARTIFICIAL INTELLIGENCE IN THE LIFE SCIENCES, 2023
- DOI för Combining molecular and cell painting image data for mechanism of action prediction
- Ladda ner fulltext (pdf) av Combining molecular and cell painting image data for mechanism of action prediction
2023
A method for Boolean analysis of protein interactions at a molecular level
Ingår i Nature Communications, 2022
- DOI för A method for Boolean analysis of protein interactions at a molecular level
- Ladda ner fulltext (pdf) av A method for Boolean analysis of protein interactions at a molecular level
Alla publikationer
Artiklar i tidskrift
Combining molecular and cell painting image data for mechanism of action prediction
Ingår i Artificial Intelligence in the Life Sciences, s. 100060-100060, 2023
Evaluating the utility of brightfield image data for mechanism of action prediction
Ingår i PloS Computational Biology, 2023
- DOI för Evaluating the utility of brightfield image data for mechanism of action prediction
- Ladda ner fulltext (pdf) av Evaluating the utility of brightfield image data for mechanism of action prediction
Combining molecular and cell painting image data for mechanism of action prediction
Ingår i ARTIFICIAL INTELLIGENCE IN THE LIFE SCIENCES, 2023
- DOI för Combining molecular and cell painting image data for mechanism of action prediction
- Ladda ner fulltext (pdf) av Combining molecular and cell painting image data for mechanism of action prediction
A method for Boolean analysis of protein interactions at a molecular level
Ingår i Nature Communications, 2022
- DOI för A method for Boolean analysis of protein interactions at a molecular level
- Ladda ner fulltext (pdf) av A method for Boolean analysis of protein interactions at a molecular level
Predicting protein network topology clusters from chemical structure using deep learning
Ingår i Journal of Cheminformatics, 2022
- DOI för Predicting protein network topology clusters from chemical structure using deep learning
- Ladda ner fulltext (pdf) av Predicting protein network topology clusters from chemical structure using deep learning
Ingår i IEEE journal of biomedical and health informatics, s. 371-380, 2021
- DOI för Deep learning and conformal prediction for hierarchical analysis of large-scale whole-slide tissue images
- Ladda ner fulltext (pdf) av Deep learning and conformal prediction for hierarchical analysis of large-scale whole-slide tissue images
Learning to see colours: Biologically relevant virtual staining for adipocyte cell images
Ingår i PLOS ONE, 2021
- DOI för Learning to see colours: Biologically relevant virtual staining for adipocyte cell images
- Ladda ner fulltext (pdf) av Learning to see colours: Biologically relevant virtual staining for adipocyte cell images
Ingår i GigaScience, s. 1-14, 2021
- DOI för Rapid development of cloud-native intelligent data pipelines for scientific data streams using the HASTE Toolkit
- Ladda ner fulltext (pdf) av Rapid development of cloud-native intelligent data pipelines for scientific data streams using the HASTE Toolkit
Deep-learning models for lipid nanoparticle-based drug delivery
Ingår i Nanomedicine, s. 1097-1110, 2021
Ingår i Ecology and Evolution, s. 3079-3089, 2020
- DOI för Occupancy versus colonization-extinction models for projecting population trends at different spatial scales
- Ladda ner fulltext (pdf) av Occupancy versus colonization-extinction models for projecting population trends at different spatial scales
Ingår i SLAS Discovery, s. 466-475, 2019
- DOI för Transfer Learning with Deep Convolutional Neural Networks for Classifying Cellular Morphological Changes
- Ladda ner fulltext (pdf) av Transfer Learning with Deep Convolutional Neural Networks for Classifying Cellular Morphological Changes
Artiklar, forskningsöversikt
Deep Learning in Image Cytometry: A Review
Ingår i Cytometry Part A, s. 366-380, 2019
- DOI för Deep Learning in Image Cytometry: A Review
- Ladda ner fulltext (pdf) av Deep Learning in Image Cytometry: A Review