Benny Avelin
Universitetslektor vid Matematiska institutionen; Analys och partiella differentialekvationer
- Telefon:
- 018-471 32 26
- E-post:
- benny.avelin@math.uu.se
- Besöksadress:
- Ångströmlaboratoriet, Lägerhyddsvägen 1
- Postadress:
- Box 480
751 06 UPPSALA
Universitetslektor vid Matematiska institutionen; Akademisk personal
- Telefon:
- 018-471 32 26
- E-post:
- benny.avelin@math.uu.se
- Besöksadress:
- Ångströmlaboratoriet, Lägerhyddsvägen 1
- Postadress:
- Box 480
751 06 UPPSALA
Ladda ned kontaktuppgifter för Benny Avelin vid Matematiska institutionen; Akademisk personal
Universitetslektor vid Matematiska institutionen; Statistik, AI och data science
- Telefon:
- 018-471 32 26
- E-post:
- benny.avelin@math.uu.se
- Besöksadress:
- Ångströmlaboratoriet, Lägerhyddsvägen 1
- Postadress:
- Box 480
751 06 UPPSALA
Mer information visas för dig som medarbetare om du loggar in.
Kort presentation
Personal Webpage https://sites.google.com/site/bennyavelin/
Group Webpage Analysis, PDEs and Applications
Publikationer
Urval av publikationer
- Boundary Estimates for Certain Degenerate and Singular Parabolic Equations (2016)
- Estimates for Solutions to Equations of p-Laplace type in Ahlfors regular NTA-domains (2014)
- Boundary Behavior of p-Laplace Type Equations (2013)
- Wolff-Potential Estimates and Doubling of Subelliptic p-harmonic measures (2013)
- Optimal doubling, Reifenberg flatness and operators of p-Laplace type (2011)
- Approximation and Bounded Plurisubharmonic Exhaustion Functions Beyond Lipschitz Domains
Senaste publikationer
- A Galerkin type method for kinetic Fokker-Planck equations based on Hermite expansions (2024)
- A note on the capacity estimate in metastability for generic configurations (2024)
- Geometric Characterization of the Eyring-Kramers Formula (2023)
- Deep Limits and a Cut-Off Phenomenon for Neural Networks (2022)
- Neural ODEs as the deep limit of ResNets with constant weights (2021)
Alla publikationer
Artiklar
- A Galerkin type method for kinetic Fokker-Planck equations based on Hermite expansions (2024)
- A note on the capacity estimate in metastability for generic configurations (2024)
- Geometric Characterization of the Eyring-Kramers Formula (2023)
- Deep Limits and a Cut-Off Phenomenon for Neural Networks (2022)
- Neural ODEs as the deep limit of ResNets with constant weights (2021)
- ON EXISTENCE AND UNIQUENESS OF THE SOLUTION FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS (2021)
- Uncertainty-Aware Body Composition Analysis with Deep Regression Ensembles on UK Biobank MRI (2021)
- Boundary behavior of solutions to the parabolic p-Laplace equation II (2020)
- Boundary behavior of solutions to the parabolic p-Laplace equation (2019)
- Nonlinear Caldern-Zygmund Theory in the Limiting Case (2018)
- A Carleson type inequality for fully nonlinear elliptic equations with non-Lipschitz drift term (2017)
- A comparison principle for the porous medium equation and its consequences (2017)
- Characterizations of interior polar sets for the degenerate p-parabolic equation (2017)
- On time dependent domains for the degenerate p-parabolic equation (2016)
- Boundary Estimates for Certain Degenerate and Singular Parabolic Equations (2016)
- Approximation of plurisubharmonic functions (2016)
- A note on the hyperconvexity of pseudoconvex domains beyond Lipschitz regularity (2015)
- Lower semicontinuity of weak supersolutions to the porous medium equation (2015)
- Harnack estimates for degenerate parabolic equations modeled on the subelliptic $p-$Laplacian (2014)
- Estimates for Solutions to Equations of p-Laplace type in Ahlfors regular NTA-domains (2014)
- On a one-phase free boundary problem (2013)
- Wolff-Potential Estimates and Doubling of Subelliptic p-harmonic measures (2013)
- Boundary estimates for solutions to operators of $p$-Laplace type with lower order terms (2011)
- Optimal doubling, Reifenberg flatness and operators of p-Laplace type (2011)
- Approximation and Bounded Plurisubharmonic Exhaustion Functions Beyond Lipschitz Domains
- Weak and Perron's Solutions to Linear Kinetic Fokker-Planck Equations of Divergence Form in Bounded Domains