Andreas Lindholm
Gästforskare vid Institutionen för medicinska vetenskaper; Klinisk epidemiologi
- E-post:
- andreas.lindholm@uu.se
- Besöksadress:
- Akademiska sjukhuset, ingång 40, 5 tr
751 85 UPPSALA - Postadress:
- Akademiska sjukhuset, ingång 40, 5 tr
751 85 UPPSALA
- ORCID:
- 0000-0002-5601-1687
Publikationer
Senaste publikationer
Predicting Political Violence Using a State-Space Model
Ingår i International Interactions, s. 759-777, 2022
Data Consistency Approach to Model Validation
Ingår i IEEE Access, s. 59788-59796, 2019
- DOI för Data Consistency Approach to Model Validation
- Ladda ner fulltext (pdf) av Data Consistency Approach to Model Validation
Identification of a Duffing oscillator using particle Gibbs with ancestor sampling
Ingår i Journal of Physics, Conference Series, 2019
- DOI för Identification of a Duffing oscillator using particle Gibbs with ancestor sampling
- Ladda ner fulltext (pdf) av Identification of a Duffing oscillator using particle Gibbs with ancestor sampling
Probabilistic learning of nonlinear dynamical systems using sequential Monte Carlo
Ingår i Mechanical systems and signal processing, s. 866-883, 2018
Ingår i Mechanical systems and signal processing, s. 915-928, 2018
Alla publikationer
Artiklar i tidskrift
Predicting Political Violence Using a State-Space Model
Ingår i International Interactions, s. 759-777, 2022
Data Consistency Approach to Model Validation
Ingår i IEEE Access, s. 59788-59796, 2019
- DOI för Data Consistency Approach to Model Validation
- Ladda ner fulltext (pdf) av Data Consistency Approach to Model Validation
Identification of a Duffing oscillator using particle Gibbs with ancestor sampling
Ingår i Journal of Physics, Conference Series, 2019
- DOI för Identification of a Duffing oscillator using particle Gibbs with ancestor sampling
- Ladda ner fulltext (pdf) av Identification of a Duffing oscillator using particle Gibbs with ancestor sampling
Probabilistic learning of nonlinear dynamical systems using sequential Monte Carlo
Ingår i Mechanical systems and signal processing, s. 866-883, 2018
Ingår i Mechanical systems and signal processing, s. 915-928, 2018
Ingår i Applied Energy, s. 195-207, 2018
A flexible state–space model for learning nonlinear dynamical systems
Ingår i Automatica, s. 189-199, 2017
Learning dynamical systems with particle stochastic approximation EM
Doktorsavhandlingar, sammanläggning
Konferensbidrag
Learning nonlinear state-space models using smooth particle-filter-based likelihood approximations
s. 652-657, 2018
How consistent is my model with the data?: Information-theoretic model check
s. 407-412, 2018
Computationally Efficient Bayesian Learning of Gaussian Process State Space Models
Ingår i Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, s. 213-221, 2016
Marginalizing Gaussian process hyperparameters using sequential Monte Carlo
Ingår i Proc. 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, s. 477-480, 2015
- DOI för Marginalizing Gaussian process hyperparameters using sequential Monte Carlo
- Ladda ner fulltext (pdf) av Marginalizing Gaussian process hyperparameters using sequential Monte Carlo
Nonlinear state space smoothing using the conditional particle filter
Ingår i Proc. 17th IFAC Symposium on System Identification, s. 975-980, 2015
Nonlinear state space model identification using a regularized basis function expansion
Ingår i Proc. 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, s. 481-484, 2015
Identification of jump Markov linear models using particle filters
Ingår i Proc. 53rd Conference on Decision and Control, s. 6504-6509, 2014