Thomas Schön
Professor i artificiell intelligens vid Institutionen för informationsteknologi; Systemteknik
- Telefon:
- 018-471 25 94
- Mobiltelefon:
- 073-593 38 87
- E-post:
- thomas.schon@it.uu.se
- Besöksadress:
- Hus 10, Regementsvägen 10
- Postadress:
- Box 337
751 05 UPPSALA
- Akademiska meriter:
- Docent
Kort presentation
Thomas B. Schön är Beijerprofessor i artificiell intelligens vid institutionen för informationsteknologi vid Uppsala universitet och vetenskaplig ledare för det femåriga projektet AI4Research. Han doktorerade i reglerteknik i februari 2006 vid Linköpings universitet, och har tidigare varit verksam vid University of Cambridge (Storbritannien), University of Newcastle (Australien) och Técnica Federico Santa María (Valparaíso, Chile).
Nyckelord
- artificial intelligence
- machine learning
- automatic control
- deep learning
- signal processing
- computer vision
- data analytics
- decision-making with algorithms
- artificiell intelligens
- maskininlärning
- ai4research
- reglerteknik
- signalbehandling
- datorseende
Biografi
Thomas B. Schön är Beijerprofessor i artificiell intelligens vid institutionen för informationsteknologi vid Uppsala universitet och vetenskaplig ledare för det femåriga projektet AI4Research. Han doktorerade i reglerteknik i februari 2006, tog sin Masterexamen i tillämpad fysik och elektroteknik i september 2001 och sin kandidatexamen i företagsekonomi 2001, samtliga vid Linköpings universitet. Han har tidigare varit verksam vid University of Cambridge (Storbritannien), University of Newcastle (Australien) och Técnica Federico Santa María (Valparaíso, Chile). 2018 valdes han in i Kungl. Ingenjörsvetenskapsakademien och Kungliga Vetenskaps-Societeten (Uppsala). Han belönades med Tage Erlanders pris i naturvetenskap och teknik 2017 och Arnbergska priset 2016, som båda utdelas av Kungl. Vetenskapsakademien. Han belönades år 2014 med Automatica Best Paper Prize och 2013 med Best PhD Thesis Award av the European Association for Signal Processing 2009 utsågs han till bästa lärare vid Linköpings universitets tekniska högskola. Han är medlem i IEEE (Institute of Electrical and Electronics Engineers) och i ELLIS Society.
Thomas Schön har ett brett intresse för att utveckla nya algoritmer och matematiska modeller som kan lära sig och agera utifrån data. Hans huvudsakliga vetenskapliga fält är maskininlärning, men han publicerar regelbundet inom andra fält såsom statistik, reglerteknik, signalbehandling och datorseende. Han bedriver både grundforskning och tillämpad forskning, där det sistnämnda oftast genomförs i samarbete med industri eller tillämpade forskargrupper.

Publikationer
Senaste publikationer
Underlätta samarbeten mellan företag och universitet
2025
Automated segmentation of synchrotron-scanned fossils
Ingår i Fossil Record, s. 103-114, 2025
- DOI för Automated segmentation of synchrotron-scanned fossils
- Ladda ner fulltext (pdf) av Automated segmentation of synchrotron-scanned fossils
Rättsliga hinder mot samverkan?: Juridik och ledningsfrågor vid doktorandsamverkan
2025
Deep networks for system identification: A survey
Ingår i Automatica, 2025
- DOI för Deep networks for system identification: A survey
- Ladda ner fulltext (pdf) av Deep networks for system identification: A survey
A Model Predictive Control Approach to Motion Planning in Dynamic Environments
Ingår i 2024 European Control Conference (ECC), s. 3247-3254, 2024
Alla publikationer
Artiklar i tidskrift
Automated segmentation of synchrotron-scanned fossils
Ingår i Fossil Record, s. 103-114, 2025
- DOI för Automated segmentation of synchrotron-scanned fossils
- Ladda ner fulltext (pdf) av Automated segmentation of synchrotron-scanned fossils
Deep networks for system identification: A survey
Ingår i Automatica, 2025
- DOI för Deep networks for system identification: A survey
- Ladda ner fulltext (pdf) av Deep networks for system identification: A survey
Uncertainty Estimation with Recursive Feature Machines
Ingår i Proceedings of Machine Learning Research, s. 1408-1437, 2024
Rao-Blackwellized particle smoothing for simultaneous localization and mapping
Ingår i DATA-CENTRIC ENGINEERING, 2024
- DOI för Rao-Blackwellized particle smoothing for simultaneous localization and mapping
- Ladda ner fulltext (pdf) av Rao-Blackwellized particle smoothing for simultaneous localization and mapping
On the Equivalence of Direct and Indirect Data-Driven Predictive Control Approaches
Ingår i IEEE Control Systems Letters, s. 796-801, 2024
Ingår i IFAC-PapersOnLine, s. 247-252, 2024
Evaluating regression and probabilistic methods for ECG-based electrolyte prediction
Ingår i Scientific Reports, 2024
- DOI för Evaluating regression and probabilistic methods for ECG-based electrolyte prediction
- Ladda ner fulltext (pdf) av Evaluating regression and probabilistic methods for ECG-based electrolyte prediction
Ingår i Neurocritical Care, 2024
- DOI för Machine Learning Based Prediction of Imminent ICP Insults During Neurocritical Care of Traumatic Brain Injury
- Ladda ner fulltext (pdf) av Machine Learning Based Prediction of Imminent ICP Insults During Neurocritical Care of Traumatic Brain Injury
Safe Reinforcement Learning in Uncertain Contexts
Ingår i IEEE Transactions on robotics, s. 1828-1841, 2024
Screening for Chagas disease from the electrocardiogram using a deep neural network
Ingår i PLoS Neglected Tropical Diseases, 2023
- DOI för Screening for Chagas disease from the electrocardiogram using a deep neural network
- Ladda ner fulltext (pdf) av Screening for Chagas disease from the electrocardiogram using a deep neural network
How Reliable is Your Regression Model’s Uncertainty Under Real-World Distribution Shifts?
Ingår i Transactions on Machine Learning Research, 2023
Variational Elliptical Processes
Ingår i Transactions on Machine Learning Research, 2023
Gaussian inference for data-driven state-feedback design of nonlinear systems
Ingår i IFAC-PapersOnLine, s. 4796-4803, 2023
- DOI för Gaussian inference for data-driven state-feedback design of nonlinear systems
- Ladda ner fulltext (pdf) av Gaussian inference for data-driven state-feedback design of nonlinear systems
Neural motion planning in dynamic environments
Ingår i IFAC-PapersOnLine, s. 10126-10131, 2023
- DOI för Neural motion planning in dynamic environments
- Ladda ner fulltext (pdf) av Neural motion planning in dynamic environments
On the regularization in DeePC
Ingår i IFAC-PapersOnLine, s. 625-631, 2023
On the trade-off between event-based and periodic state estimation under bandwidth constraints
Ingår i IFAC-PapersOnLine, s. 5275-5280, 2023
- DOI för On the trade-off between event-based and periodic state estimation under bandwidth constraints
- Ladda ner fulltext (pdf) av On the trade-off between event-based and periodic state estimation under bandwidth constraints
Invertible Kernel PCA With Random Fourier Features
Ingår i IEEE Signal Processing Letters, s. 563-567, 2023
Online Learning for Prediction via Covariance Fitting: Computation, Performance and Robustness
Ingår i Transactions on Machine Learning Research, 2023
Ingår i Computer Methods in Applied Mechanics and Engineering, 2023
- DOI för Inferring the probability distribution over strain tensors in polycrystals from diffraction based measurements
- Ladda ner fulltext (pdf) av Inferring the probability distribution over strain tensors in polycrystals from diffraction based measurements
Smoothed State Estimation via Efficient Solution of Linear Equations
Ingår i IEEE Transactions on Automatic Control, s. 5877-5889, 2023
Overparameterized Linear Regression Under Adversarial Attacks
Ingår i IEEE Transactions on Signal Processing, s. 601-614, 2023
Variational system identification for nonlinear state-space models
Ingår i Automatica, 2023
Probabilistic Estimation of Instantaneous Frequencies of Chirp Signals
Ingår i IEEE Transactions on Signal Processing, s. 461-476, 2023
Predicting Political Violence Using a State-Space Model
Ingår i International Interactions, s. 759-777, 2022
Ingår i Scientific Reports, 2022
- DOI för Development and validation of deep learning ECG-based prediction of myocardial infarction in emergency department patients
- Ladda ner fulltext (pdf) av Development and validation of deep learning ECG-based prediction of myocardial infarction in emergency department patients
Ingår i IEEE Transactions on Visualization and Computer Graphics, s. 2602-2614, 2022
Data to Controller for Nonlinear Systems: An Approximate Solution
Ingår i IEEE Control Systems Letters, s. 1196-1201, 2022
Ingår i IEEE CONTROL SYSTEMS MAGAZINE, s. 75-102, 2022
Ingår i IEEE Transactions on Signal Processing, s. 3676-3692, 2022
Memory efficient constrained optimization of scanning-beam lithography
Ingår i Optics Express, s. 20564-20579, 2022
- DOI för Memory efficient constrained optimization of scanning-beam lithography
- Ladda ner fulltext (pdf) av Memory efficient constrained optimization of scanning-beam lithography
Deep neural network-estimated electrocardiographic age as a mortality predictor
Ingår i Nature Communications, 2021
- DOI för Deep neural network-estimated electrocardiographic age as a mortality predictor
- Ladda ner fulltext (pdf) av Deep neural network-estimated electrocardiographic age as a mortality predictor
Stochastic quasi-Newton with line-search regularisation
Ingår i Automatica, 2021
Universal probabilistic programming offers a powerful approach to statistical phylogenetics
Ingår i Communications Biology, 2021
- DOI för Universal probabilistic programming offers a powerful approach to statistical phylogenetics
- Ladda ner fulltext (pdf) av Universal probabilistic programming offers a powerful approach to statistical phylogenetics
Quantifying the Uncertainty of the Relative Geometry in Inertial Sensors Arrays
Ingår i IEEE Sensors Journal, s. 19362-19373, 2021
- DOI för Quantifying the Uncertainty of the Relative Geometry in Inertial Sensors Arrays
- Ladda ner fulltext (pdf) av Quantifying the Uncertainty of the Relative Geometry in Inertial Sensors Arrays
Gaussian Variational State Estimation for Nonlinear State-Space Models
Ingår i IEEE Transactions on Signal Processing, s. 5979-5993, 2021
Automatic diagnosis of the 12-lead ECG using a deep neural network
Ingår i Nature Communications, 2020
- DOI för Automatic diagnosis of the 12-lead ECG using a deep neural network
- Ladda ner fulltext (pdf) av Automatic diagnosis of the 12-lead ECG using a deep neural network
Machine Learning in Risk Prediction
Ingår i Hypertension, s. 1165-1166, 2020
Nonlinear Input Design as Optimal Control of a Hamiltonian System
Ingår i IEEE Control Systems Letters, s. 85-90, 2020
Learning Robust LQ-Controllers Using Application Oriented Exploration
Ingår i IEEE Control Systems Letters, s. 19-24, 2020
The effect of interventions on COVID-19
Ingår i Nature, 2020
On the smoothness of nonlinear system identification
Ingår i Automatica, 2020
Smoothing With Couplings of Conditional Particle Filters
Ingår i Journal of the American Statistical Association, s. 721-729, 2020
Getting started with particle Metropolis-Hastings for inference in nonlinear dynamical models
Ingår i Journal of Statistical Software, s. 1-41, 2019
- DOI för Getting started with particle Metropolis-Hastings for inference in nonlinear dynamical models
- Ladda ner fulltext (pdf) av Getting started with particle Metropolis-Hastings for inference in nonlinear dynamical models
Data Consistency Approach to Model Validation
Ingår i IEEE Access, s. 59788-59796, 2019
- DOI för Data Consistency Approach to Model Validation
- Ladda ner fulltext (pdf) av Data Consistency Approach to Model Validation
Identification of a Duffing oscillator using particle Gibbs with ancestor sampling
Ingår i Journal of Physics, Conference Series, 2019
- DOI för Identification of a Duffing oscillator using particle Gibbs with ancestor sampling
- Ladda ner fulltext (pdf) av Identification of a Duffing oscillator using particle Gibbs with ancestor sampling
Probabilistic approach to limited-data computed tomography reconstruction
Ingår i Inverse Problems, 2019
A Fast and Robust Algorithm for Orientation Estimation Using Inertial Sensors
Ingår i IEEE Signal Processing Letters, s. 1673-1677, 2019
Elements of Sequential Monte Carlo
Ingår i FOUNDATIONS AND TRENDS IN MACHINE LEARNING, s. 187-306, 2019
Neutron transmission strain tomography for non-constant stress-free lattice spacing
Ingår i Nuclear Instruments and Methods in Physics Research Section B, s. 64-73, 2019
High-Dimensional Filtering Using Nested Sequential Monte Carlo
Ingår i IEEE Transactions on Signal Processing, s. 4177-4188, 2019
On model order priors for Bayesian identification of SISO linear systems
Ingår i International Journal of Control, s. 1645-1661, 2019
Optimal controller/observer gains of discounted-cost LQG systems
Ingår i Automatica, s. 471-474, 2019
Ingår i Mechanical systems and signal processing, s. 915-928, 2018
Probabilistic learning of nonlinear dynamical systems using sequential Monte Carlo
Ingår i Mechanical systems and signal processing, s. 866-883, 2018
Probabilistic modelling and reconstruction of strain
Ingår i Nuclear Instruments and Methods in Physics Research Section B, s. 141-155, 2018
Automated learning with a probabilistic programming language: Birch
Ingår i Annual Reviews in Control, s. 29-43, 2018
Maximum likelihood identification of stable linear dynamical systems
Ingår i Automatica, s. 280-292, 2018
Modeling and Interpolation of the Ambient Magnetic Field by Gaussian Processes
Ingår i IEEE Transactions on robotics, s. 1112-1127, 2018
System identification through online sparse Gaussian process regression with input noise
Ingår i IFAC Journal of Systems and Control, s. 1-11, 2017
Divide-and-Conquer with sequential Monte Carlo
Ingår i Journal of Computational And Graphical Statistics, s. 445-458, 2017
Smoothed State Estimation via Efficient Solution of Linear Equations
Ingår i IFAC-PapersOnLine, s. 1613-1618, 2017
A flexible state–space model for learning nonlinear dynamical systems
Ingår i Automatica, s. 189-199, 2017
On robust input design for nonlinear dynamical models
Ingår i Automatica, s. 268-278, 2017
Rao–Blackwellized particle smoothers for conditionally linear Gaussian models
Ingår i IEEE Journal on Selected Topics in Signal Processing, s. 353-365, 2016
Using convolution to estimate the score function for intractable state-transition models
Ingår i IEEE Signal Processing Letters, s. 498-501, 2016
Mean and variance of the LQG cost function
Ingår i Automatica, s. 216-223, 2016
Magnetometer calibration using inertial sensors
Ingår i IEEE Sensors Journal, s. 5679-5689, 2016
A new structure exploiting derivation of recursive direct weight optimization
Ingår i IEEE Transactions on Automatic Control, s. 1683-1685, 2015
Indoor positioning using ultrawideband and inertial measurements
Ingår i IEEE Transactions on Vehicular Technology, s. 1293-1303, 2015
On the exponential convergence of the Kaczmarz algorithm
Ingår i IEEE Signal Processing Letters, s. 1571-1574, 2015
Particle Metropolis–Hastings using gradient and Hessian information
Ingår i Statistics and computing, s. 81-92, 2015
Particle Gibbs with ancestor sampling
Ingår i Journal of machine learning research, s. 2145-2184, 2014
Artiklar, forskningsöversikt
Guarantees for data-driven control of nonlinear systems using semidefinite programming: A survey
Ingår i Annual Reviews in Control, 2023
Sequential Monte Carlo: A Unified Review
Ingår i ANNUAL REVIEW OF CONTROL ROBOTICS AND AUTONOMOUS SYSTEMS, s. 159-182, 2023
- DOI för Sequential Monte Carlo: A Unified Review
- Ladda ner fulltext (pdf) av Sequential Monte Carlo: A Unified Review
Böcker
Machine learning: a first course for engineers and scientists
Cambridge University Press, 2022
Using Inertial Sensors for Position and Orientation Estimation
Now Publishers Inc., 2017
Konferensbidrag
A Model Predictive Control Approach to Motion Planning in Dynamic Environments
Ingår i 2024 European Control Conference (ECC), s. 3247-3254, 2024
Online Learning in Motion Modeling for Intra-interventional Image Sequences
Ingår i Medical Image Computing and Computer Assisted Intervention – MICCAI 2024, s. 706-716, 2024
- DOI för Online Learning in Motion Modeling for Intra-interventional Image Sequences
- Ladda ner fulltext (pdf) av Online Learning in Motion Modeling for Intra-interventional Image Sequences
Photo-Realistic Image Restoration in the Wild with Controlled Vision-Language Models
Ingår i 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops CVPRW 2024, s. 6641-6651, 2024
Controlling Vision-Language Models for Multi-Task Image Restoration
2024
NTIRE 2024 restore any image model (RAIM) in the wild challenge
Ingår i 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops CVPRW 2024, s. 6632-6640, 2024
No Double Descent in Principal Component Regression: A High-Dimensional Analysis
Ingår i International Conference on Machine Learning (ICML), 2024
Entropy-regularized diffusion policy with Q-ensembles for offline reinforcement learning
Ingår i Advances in Neural Information Processing Systems 37 (NeurIPS 2024), 2024
On Feynman–Kac training of partial Bayesian neural networks
Ingår i Proceedings of the 27th International Conference on Artificial Intelligence and Statistics (AISTATS), s. 3223-3231, 2024
Uncertainty Estimation with Recursive Feature Machines
2024
Regularization properties of adversarially-trained linear regression
Ingår i Advances in Neural Information Processing Systems 36 (NeurIPS 2023), s. 23658-23670, 2023
NTIRE 2023 Image Shadow Removal Challenge Report
Ingår i 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), s. 1788-1807, 2023
Lens-to-Lens Bokeh Effect Transformation: NTIRE 2023 Challenge Report
Ingår i 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, s. 1643-1659, 2023
NTIRE 2023 HR NonHomogeneous Dehazing Challenge Report
Ingår i 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2023
Refusion: Enabling Large-Size Realistic Image Restoration With Latent-Space Diffusion Models
Ingår i 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), s. 1680-1691, 2023
NTIRE 2023 Challenge on Stereo Image Super-Resolution: Methods and Results
Ingår i IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), s. 1346-1372, 2023
Unsupervised dynamic modeling of medical image transformations
Ingår i 2022 25th International Conference on Information Fusion (FUSION 2022), s. 1-7, 2022
Learning Proposals for Practical Energy-Based Regression
Ingår i International conference on artificial intelligence and statistics, vol 151, s. 4685-4704, 2022
Learning a Deformable Registration Pyramid
Ingår i Segmentation, Classification, and Registration of Multi-modality Medical Imaging Data, s. 80-86, 2021
- DOI för Learning a Deformable Registration Pyramid
- Ladda ner fulltext (pdf) av Learning a Deformable Registration Pyramid
Accurate 3D Object Detection using Energy-Based Models
Ingår i 2021 IEEE/CVF Conference on Computer Vision and Pattern Recogition Workshops (CVPRW 2021), s. 2849-2858, 2021
Learning deep autoregressive models for hierarchical data
Ingår i IFAC PapersOnLine, s. 529-534, 2021
- DOI för Learning deep autoregressive models for hierarchical data
- Ladda ner fulltext (pdf) av Learning deep autoregressive models for hierarchical data
Deep State Space Models for Nonlinear System Identification
Ingår i IFAC PapersOnLine, s. 481-486, 2021
- DOI för Deep State Space Models for Nonlinear System Identification
- Ladda ner fulltext (pdf) av Deep State Space Models for Nonlinear System Identification
First Steps Towards Self-Supervised Pretraining of the 12-Lead ECG
Ingår i 2021 Computing In Cardiology (CINC), 2021
Ingår i IFAC PapersOnLine, s. 505-510, 2021
How convolutional neural networks deal with aliasing
Ingår i 2021 IEEE International Conference On Acoustics, Speech And Signal Processing (ICASSP 2021), s. 2755-2759, 2021
Willems' fundamental lemma based on second-order moments
Ingår i 2021 60th IEEE Conference On Decision And Control (CDC), s. 396-401, 2021
Variational State and Parameter Estimation
Ingår i IFAC PapersOnLine, s. 732-737, 2021
- DOI för Variational State and Parameter Estimation
- Ladda ner fulltext (pdf) av Variational State and Parameter Estimation
Bayes Control of Hammerstein Systems
Ingår i IFAC PapersOnLine, s. 755-760, 2021
- DOI för Bayes Control of Hammerstein Systems
- Ladda ner fulltext (pdf) av Bayes Control of Hammerstein Systems
Beyond Occam's Razor in System Identification: Double-Descent when Modeling Dynamics
Ingår i IFAC PapersOnLine, s. 97-102, 2021
- DOI för Beyond Occam's Razor in System Identification: Double-Descent when Modeling Dynamics
- Ladda ner fulltext (pdf) av Beyond Occam's Razor in System Identification: Double-Descent when Modeling Dynamics
Automatic 12-lead ECG Classification Using a Convolutional Network Ensemble
Ingår i 2020 Computing in Cardiology, 2020
Energy-Based Models for Deep Probabilistic Regression
2020
How to Train Your Energy-Based Model for Regression
2020
Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer Vision
Ingår i 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2020), s. 1289-1298, 2020
Optimistic robust linear quadratic dual control
Ingår i Proceedings of Machine Learning Research, VOL 120, s. 550-560, 2020
Beyond exploding and vanishing gradients: analysing RNN training using attractors and smoothness
Ingår i Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), s. 2370-2380, 2020
Ingår i The 35th Uncertainty in Artificial Intelligence Conference (UAI), s. 679-689, 2020
Particle Filter with Rejection Control and Unbiased Estimator of the Marginal Likelihood
Ingår i ICASSP 2020, s. 5860-5864, 2020
Deep Learning and System Identification
Ingår i IFAC Papersonline, s. 1175-1181, 2020
- DOI för Deep Learning and System Identification
- Ladda ner fulltext (pdf) av Deep Learning and System Identification
A fast quasi-Newton-type method for large-scale stochastic optimisation
Ingår i IFAC PapersOnline, s. 1249-1254, 2020
- DOI för A fast quasi-Newton-type method for large-scale stochastic optimisation
- Ladda ner fulltext (pdf) av A fast quasi-Newton-type method for large-scale stochastic optimisation
Bayesian identification of state-space models via adaptive thermostats
Ingår i 2019 IEEE 58th conference on decision and control (CDC), s. 7382-7388, 2019
Evaluating model calibration in classification
Ingår i 22nd International Conference on Artificial Intelligence and Statistics, s. 3459-3467, 2019
Inferring Heterogeneous Causal Effects in Presence of Spatial Confounding
Ingår i Proceedings of the 36th International Conference on Machine Learning, s. 4942-4950, 2019
Deep convolutional networks in system identification
Ingår i Proc. 58th IEEE Conference on Decision and Control, s. 3670-3676, 2019
Robust exploration in linear quadratic reinforcement learning
Ingår i Advances in Neural Information Processing Systems 32 (NIPS 2019), 2019
Conditionally Independent Multiresolution Gaussian Processes
Ingår i 22nd International Conference On Artificial Intelligence And Statistics, Vol 89, 2019
Automatic diagnosis of short-duration 12-lead ECG using a deep convolutional network
Ingår i ML4H: Machine Learning for Health Workshop at NeurIPS, Montréal, Canada, December 2018., 2018
Learning nonlinear state-space models using smooth particle-filter-based likelihood approximations
s. 652-657, 2018
Learning localized spatio-temporal models from streaming data
Ingår i Proceedings of the 35th International Conference on Machine Learning, s. 3927-3935, 2018
Regularized parametric system identification: a decision-theoretic formulation
Ingår i 2018 Annual American Control Conference (ACC), s. 1895-1900, 2018
Data-driven impulse response regularization via deep learning
s. 1-6, 2018
Delayed sampling and automatic Rao-Blackwellization of probabilistic programs
Ingår i Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS), Lanzarote, Spain, April, 2018, 2018
Auxiliary-Particle-Filter-based Two-Filter Smoothing for Wiener State-Space Models
Ingår i Proceedings of the 21st International Conference on Information Fusion, Cambridge, UK, July, 2018., s. 1904-1911, 2018
Learning convex bounds for linear quadratic control policy synthesis
Ingår i Neural Information Processing Systems 2018, 2018
How consistent is my model with the data?: Information-theoretic model check
s. 407-412, 2018
Probabilistic programming allows for automated inference in factor graph models
2018
Linearly constrained Gaussian processes
Ingår i Proc. 31st Conference on Neural Information Processing Systems, s. 1215-1224, 2017
Prediction Performance After Learning in Gaussian Process Regression
Ingår i Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, s. 1264-1272, 2017
On the construction of probabilistic Newton-type algorithms
Ingår i Proc. 56th Conference on Decision and Control, s. 6499-6504, 2017
Particle-based Gaussian process optimization for input design in nonlinear dynamical models
Ingår i 2016 IEEE 55th Conference On Decision And Control (CDC), s. 2085-2090, 2016
Computationally Efficient Bayesian Learning of Gaussian Process State Space Models
Ingår i Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, s. 213-221, 2016
Accelerometer calibration using sensor fusion with a gyroscope
Ingår i Proc. 19th Statistical Signal Processing Workshop, s. 660-664, 2016
- DOI för Accelerometer calibration using sensor fusion with a gyroscope
- Ladda ner fulltext (pdf) av Accelerometer calibration using sensor fusion with a gyroscope
Prediction performance after learning in Gaussian process regression
Ingår i 25th European Research Network System Identification Workshop, 2016
A scalable and distributed solution to the inertial motion capture problem
Ingår i Proc. 19th International Conference on Information Fusion, s. 1348-1355, 2016
Marginalizing Gaussian process hyperparameters using sequential Monte Carlo
Ingår i Proc. 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, s. 477-480, 2015
- DOI för Marginalizing Gaussian process hyperparameters using sequential Monte Carlo
- Ladda ner fulltext (pdf) av Marginalizing Gaussian process hyperparameters using sequential Monte Carlo
Particle filtering based identification for autonomous nonlinear ODE models
Ingår i Proc. 17th IFAC Symposium on System Identification, s. 415-420, 2015
Nonlinear state space model identification using a regularized basis function expansion
Ingår i Proc. 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, s. 481-484, 2015
Nonlinear state space smoothing using the conditional particle filter
Ingår i Proc. 17th IFAC Symposium on System Identification, s. 975-980, 2015
Bayesian nonparametric identification of piecewise affine ARX systems
s. 709-714, 2015
On Identification via EM with Latent Disturbances and Lagrangian Relaxation
s. 69-74, 2015
Identification of jump Markov linear models using particle filters
Ingår i Proc. 53rd Conference on Decision and Control, s. 6504-6509, 2014
Backward sequential Monte Carlo for marginal smoothing
Ingår i Proc. 18th Workshop on Statistical Signal Processing, s. 368-371, 2014
Robust auxiliary particle filters using multiple importance sampling
Ingår i Proc. 18th Workshop on Statistical Signal Processing, s. 268-271, 2014