Fiona Skerman
Biträdande universitetslektor vid Matematiska institutionen; Sannolikhetsteori och kombinatorik
- Telefon:
- 018-471 31 94
- E-post:
- fiona.skerman@math.uu.se
- Besöksadress:
- Ångströmlaboratoriet, Lägerhyddsvägen 1
- Postadress:
- Box 480
751 06 UPPSALA
Biträdande universitetslektor vid Matematiska institutionen; Akademisk personal
- Telefon:
- 018-471 31 94
- E-post:
- fiona.skerman@math.uu.se
- Besöksadress:
- Ångströmlaboratoriet, Lägerhyddsvägen 1
- Postadress:
- Box 480
751 06 UPPSALA
Ladda ned kontaktuppgifter för Fiona Skerman vid Matematiska institutionen; Akademisk personal
- ORCID:
- 0000-0003-4141-7059
Mer information visas för dig som medarbetare om du loggar in.
Kort presentation
Denna text finns inte på svenska, därför visas den engelska versionen.
My research interests are in probabilistic combinatorics, in random graphs and random trees. I study the modularity function introduced by Newman and Girvan 2004 a measure of how well a graph can be clustered into communities - in particular how this behaves on random graphs. I am also interested in phase transitions in other random discrete structures, in first order logic and automata on random discrete structures.
website: https://fskerman.github.io/
Nyckelord
- ai
- artificial intelligence
- artificiell intelligens
- machine learning
- maskininlärning
- probability theory
- random graph
- sannolikhetsteori
- slumpgraf
Publikationer
Senaste publikationer
- A branching process with deletions and mergers that matches the threshold for hypercube percolation (2024)
- No additional tournaments are quasirandom-forcing? (2023)
- Finding large expanders in graphs (2023)
- Is it easier to count communities than find them? (2023)
- The modularity of random graphs on the hyperbolic plane (2021)
Alla publikationer
Artiklar
- A branching process with deletions and mergers that matches the threshold for hypercube percolation (2024)
- No additional tournaments are quasirandom-forcing? (2023)
- Finding large expanders in graphs (2023)
- The modularity of random graphs on the hyperbolic plane (2021)
- Assigning times to minimise reachability in temporal graphs (2021)
- Random tree recursions (2020)
- Modularity of Erdos-Rényi random graphs (2020)
- kappa-cut on paths and some trees (2019)
- Inversions in Split Trees and Conditional Galton-Watson Treest (2019)
- Modularity of regular and treelike graphs (2018)
- Guessing Numbers of Odd Cycles (2017)
- Degree sequences of random digraphs and bipartite graphs (2016)
- Avoider-enforcer star games (2015)