Davoud Mirzaei
Universitetslektor vid Institutionen för informationsteknologi; Beräkningsvetenskap
- Telefon:
- 018-471 28 80
- E-post:
- davoud.mirzaei@it.uu.se
- Besöksadress:
- Hus 10, Lägerhyddsvägen 1
- Postadress:
- Box 337
751 05 UPPSALA
- ORCID:
- 0000-0002-0166-4760
Mer information visas för dig som medarbetare om du loggar in.
Kort presentation
Denna text finns inte på svenska, därför visas den engelska versionen.
Homepage address: https://ddmirzaei.github.io/
Mirzaei's research foci are in developing, implementing, and analyzing the scattered data approximation methods for function approximation and numerical solution of partial differential equations. He is particularly interested in methods based on radial basis functions (RBFs) and moving least squares (MLS) approximations for numerical simulations on Euclidean spaces and on embedded submanifolds.
Publikationer
Urval av publikationer
- The D-RBF-PU method for solving surface PDEs (2023)
- The Direct Radial Basis Function Partition of Unity (D-RBF-PU) Method for Solving PDEs (2021)
- On analysis of kernel collocation methods for spherical PDEs (2020)
- A Petrov-Galerkin Kernel Approximation on the Sphere (2018)
- Direct approximation on spheres using generalized moving least squares (2017)
- Analysis of moving least squares approximation revisited (2015)
- Direct Meshless Local Petrov–Galerkin (DMLPG) method: A generalized MLS approximation (2013)
- On generalized moving least squares and diffuse derivatives (2011)
Senaste publikationer
- A non-oscillatory finite volume scheme using a weighted smoothed reconstruction (2024)
- The D-RBF-PU method for solving surface PDEs (2023)
- A fault detection method based on partition of unity and kernel approximation (2023)
- A compact radial basis function partition of unity method (2022)
- A rational RBF interpolation with conditionally positive definite kernels (2021)
Alla publikationer
Artiklar
- A non-oscillatory finite volume scheme using a weighted smoothed reconstruction (2024)
- The D-RBF-PU method for solving surface PDEs (2023)
- A fault detection method based on partition of unity and kernel approximation (2023)
- A compact radial basis function partition of unity method (2022)
- A rational RBF interpolation with conditionally positive definite kernels (2021)
- The Direct Radial Basis Function Partition of Unity (D-RBF-PU) Method for Solving PDEs (2021)
- Error and stability estimates of a least-squares variational kernel-based method for second order elliptic PDEs (2021)
- A weak-form RBF-generated finite difference method (2020)
- On analysis of kernel collocation methods for spherical PDEs (2020)
- A fast meshfree technique for the coupled thermoelasticity problem (2018)
- A Petrov-Galerkin Kernel Approximation on the Sphere (2018)
- Numerical Simulation and Error Estimation of the Time-Dependent Allen–Cahn Equation on Surfaces with Radial Basis Functions (2018)
- Direct approximation on spheres using generalized moving least squares (2017)
- Error bounds for GMLS derivatives approximations of Sobolev functions (2016)
- A new low-cost meshfree method for two and three dimensional problems in elasticity (2015)
- A greedy meshless local Petrov-Galerkin methodbased on radial basis functions (2015)
- Analysis of moving least squares approximation revisited (2015)
- Direct meshless local Petrov–Galerkin method for elastodynamic analysis (2015)
- The boundary elements method for magneto-hydrodynamic (MHD) channel flows at high Hartmann numbers (2013)
- Solving heat conduction problems by the Direct Meshless Local Petrov-Galerkin (DMLPG) method (2013)
- Direct Meshless Local Petrov–Galerkin (DMLPG) method: A generalized MLS approximation (2013)
- On generalized moving least squares and diffuse derivatives (2011)