Machine Learning of Sputter Processes

Automated materials exploration requires robust, repeatable processing.

Automated materials exploration requires robust, repeatable processing. This project is using machine learning to characterise and monitor the sputter deposition process, determine the scope of useful processes, and automatically define the right combination of sputter process settings to produce a targeted material composition.

Bild över maskininlärning för sputterprocesser.

Project members

Project leader: Sanna Jarl
Co-investigators: Jens Sjölund, Anders Holst (RISE)

FOLLOW UPPSALA UNIVERSITY ON

Uppsala University on Facebook
Uppsala University on Instagram
Uppsala University on Youtube
Uppsala University on Linkedin