Pontus Röbeck
Doktorand vid Institutionen för kirurgiska vetenskaper; Urologkirurgi
- E-post:
- pontus.robeck@uu.se
- Besöksadress:
- Akademiska sjukhuset, ingång 70, 1 tr
751 85 UPPSALA - Postadress:
- Akademiska sjukhuset, ingång 70, 1 tr
751 85 UPPSALA
Publikationer
Senaste publikationer
Robust, credible, and interpretable AI-based histopathological prostate cancer grading
Ingår i medRxiv, 2024
- DOI för Robust, credible, and interpretable AI-based histopathological prostate cancer grading
- Ladda ner fulltext (pdf) av Robust, credible, and interpretable AI-based histopathological prostate cancer grading
Ingår i The Prostate, s. 831-839, 2023
- DOI för P-score in preoperative biopsies accurately predicts P-score in final pathology at radical prostatectomy in patients with localized prostate cancer
- Ladda ner fulltext (pdf) av P-score in preoperative biopsies accurately predicts P-score in final pathology at radical prostatectomy in patients with localized prostate cancer
Ingår i Cytopathology, s. 286-294, 2023
- DOI för Multiplex protein analysis and ensemble machine learning methods of fine needle aspirates from prostate cancer patients reveal potential diagnostic signatures associated with tumour grade
- Ladda ner fulltext (pdf) av Multiplex protein analysis and ensemble machine learning methods of fine needle aspirates from prostate cancer patients reveal potential diagnostic signatures associated with tumour grade
Alla publikationer
Artiklar i tidskrift
Robust, credible, and interpretable AI-based histopathological prostate cancer grading
Ingår i medRxiv, 2024
- DOI för Robust, credible, and interpretable AI-based histopathological prostate cancer grading
- Ladda ner fulltext (pdf) av Robust, credible, and interpretable AI-based histopathological prostate cancer grading
Ingår i The Prostate, s. 831-839, 2023
- DOI för P-score in preoperative biopsies accurately predicts P-score in final pathology at radical prostatectomy in patients with localized prostate cancer
- Ladda ner fulltext (pdf) av P-score in preoperative biopsies accurately predicts P-score in final pathology at radical prostatectomy in patients with localized prostate cancer
Ingår i Cytopathology, s. 286-294, 2023
- DOI för Multiplex protein analysis and ensemble machine learning methods of fine needle aspirates from prostate cancer patients reveal potential diagnostic signatures associated with tumour grade
- Ladda ner fulltext (pdf) av Multiplex protein analysis and ensemble machine learning methods of fine needle aspirates from prostate cancer patients reveal potential diagnostic signatures associated with tumour grade