Introduktion till beräkningsvetenskap

5 hp

Kursplan, Grundnivå, 1TD342

Kod
1TD342
Utbildningsnivå
Grundnivå
Huvudområde(n) med fördjupning
Datavetenskap G1F, Matematik G1F, Teknik G1F
Betygsskala
Med beröm godkänd (5), Icke utan beröm godkänd (4), Godkänd (3), Underkänd (U)
Fastställd av
Teknisk-naturvetenskapliga fakultetsnämnden, 5 mars 2024
Ansvarig institution
Institutionen för informationsteknologi

Behörighetskrav

Kurs i programmering i Python (exempelvis Programmeringsteknik I) ska vara genomgången eller läsas parallellt. En av kurserna Envariabelanalys, Envariabelanalys M, Geometri och analys och Funktionslära för ingenjörer ska vara genomgången.

Mål

Efter godkänd kurs ska studenten kunna:

  • redogöra för och utföra uppgifter som kräver kännedom om de nyckelbegrepp som ingår i kursen;
  • beskriva och använda de algoritmer som ingår i kursen;
  • undersöka egenskaper hos beräkningsalgoritmer och matematiska modeller med hjälp av de analysförfaranden som ingår i kursen;
  • lösa tekniska och naturvetenskapliga beräkningsproblem givet en matematisk modell, genom att strukturera problemet, välja lämplig numerisk metod, samt generera lösning med hjälp av matematisk programvara och egen kod (Python).

Innehåll

Numeriska algoritmer för funktioner av en variabel och användning av programvara för att lösa sådana problem. Innehållet är indelat i tre huvudområden med algoritmer för: polynomanpassning och numerisk integration, numerisk lösning av ordinära differentialekvationer, lösning av icke-linjära ekvationer. Numerisk integration: Simpsons metod och Trapetsregeln. Ordinära differentialekvationer: Runge-Kutta metoder, explicita och implicita metoder. Lösning av icke-linjära ekvationer: Bisektion, Newton-Raphsons metod. Analys av algoritmernas noggrannhet, stabilitet, konvergens och effektivitet. IEEE-standard för flyttalsrepresentation. Problemlösning och programmering i Python. Problemlösningsmetodik. Uppdelning av ett problem i delproblem och implementation i Python. Användande av avancerad programvara för numeriska problem (NumPy och Matlab). Viktiga nyckelbegrepp som ingår i kursen är bl.a. algoritm, numerisk metod, diskretisering och diskretiseringsfel, stabilitet och instabilitet, avrundningsfel, maskinepsilon, overflow och underflow, kancellation, flyttal, noggrannhet och noggrannhetsordning, iteration och iterativ metod, konvergens hos iterativ metod, konvergenshastighet.

Undervisning

Föreläsningar, räkneövningar, laborationer och miniprojekt.

Examination

Skriftligt prov (3 hp). Övningsuppgifter och miniprojekt med skriftlig rapport (2 hp).

Om särskilda skäl finns får examinator göra undantag från det angivna examinationssättet och medge att en enskild student examineras på annat sätt. Särskilda skäl kan t.ex. vara besked om särskilt pedagogiskt stöd från universitetets samordnare för studenter med funktionsnedsättning.

Övriga föreskrifter

Kursen kan inte ingå i samma examen som 1TD393 och 1TD348.

FÖLJ UPPSALA UNIVERSITET PÅ

facebook
instagram
youtube
linkedin