Optical Materials
Syllabus, Master's level, 1TM003
- Code
- 1TM003
- Education cycle
- Second cycle
- Main field(s) of study and in-depth level
- Materials Engineering A1N, Physics A1N, Technology A1N
- Grading system
- Pass with distinction (5), Pass with credit (4), Pass (3), Fail (U)
- Finalised by
- The Faculty Board of Science and Technology, 7 February 2023
- Responsible department
- Department of Materials Science and Engineering
Entry requirements
120 credits in science/engineering. Attended course in Solid State Physics I or equivalent. Proficiency in English equivalent to the Swedish upper secondary course English 6.
Learning outcomes
After passing the course, the student should be able to:
- explain the classical theory of how light propagates in solids,
- make qualitative and quantitative analyzes of optical properties for different materials based on their electronic properties, and understand the relationship between electron structure, size and optical properties,
- describe different types of electronic and optical processes in insulators, metals and semiconductors, and quantum confined structures,
- describe different applications of optical materials such as optical filters, LEDs, diode lasers, solar cells, solar absorbers, smart windows, and meta-materials,
- assess the significance, possibilities and limitations for functionalizing materials with specific electronic and optical properties.
Content
Band structure and optical properties for different types of materials classified on the basis of their electronic structure: insulators, semiconductors, metals, and quantum wells, quantum wires and quantum dots. Fresnel formalism. Band structure models. Oscillator models. Optical processes in materials, incl absorption, excitons, luminescence, quantum confinement. Nano-optics. Metamaterials. Functional optical materials in applications such as absorber surfaces in thermal solar collectors, solar cells, smart windows, displays, photocatalysis, radiative cooling and heat-reflecting surfaces.
Instruction
Plenary lectures, problem solving classes and laboratory work.
Assessment
Written exam (4 credits). Laboratory work (1 credit).
If there are special reasons, the examiner may make exceptions from the specified examination method and allow an individual student to be examined in another way. Special reasons can e.g. be notified of special educational support from the university's coordinator for students with disabilities. Digital examination can be made if there are special reasons to do so.
Reading list
No reading list found.