Anders Öberg
Universitetslektor vid Matematiska institutionen; Dynamiska system och talteori
- Telefon:
- 018-471 31 96
- E-post:
- Anders.Oberg@math.uu.se
- Besöksadress:
- Ångströmlaboratoriet, Lägerhyddsvägen 1
- Postadress:
- Box 480
751 06 UPPSALA
Gästforskare vid Filosofiska institutionen; Teoretisk filosofi; Anknutna
- Besöksadress:
- Engelska parken, Thunbergsvägen 3 H
- Postadress:
- Box 627
751 26 UPPSALA
- Akademiska meriter:
- FD, Docent
Mer information visas för dig som medarbetare om du loggar in.
Kort presentation
I study invariant measures in ergodic theory and dynamical systems. In particular, I have results on Doeblin measures (g-measures) and eigenfunctions for the transfer operator. My coauthors include Noam Berger, Svante Janson, Anders Johansson, Mark Pollicott, and Robert S. Strichartz.
Biografi
MA in Philosophy (and Mathematics), Umeå University, January 1994
PhD in Mathematics, Umeå University, June 1998
Docent in Mathematics, Uppsala University, September 2005
PhD in Theoretical Philosophy, Uppsala University, January 2012
Publikationer
Urval av publikationer
- A piecewise contractive dynamical system and Phragmèn's election method (2019)
- Phase transitions in long-range Ising models and an optimal condition for factors of g-measures (2019)
- Ergodic Theory of Kusuoka Measures (2017)
- Unique Bernoulli g-measures (2012)
- Hilary Putnam on Meaning and Necessity (2011)
- Multifractal analysis of non-uniformly hyperbolic systems (2010)
- Square Summability of Variations and Convergence of the Transfer Operator (2008)
- Countable state shifts and uniqueness of g-measures (2007)
- Approximation of invariant measures for random iterations (2006)
- Om matematiska begrepp (2005)
- Algorithms for approximation of invariant measures for IFS (2005)
- Square summability of variations of g-functions and uniqueness of g-measures (2003)
- On Carleman and Knopp's inequalities (2002)
- Level sets of harmonic functions on the Sierpinski gasket (2002)
- Phase transitions in long-range Ising models and an optimal condition for factors of g-measures
- Properties of the energy Laplacian on Sierpinski gasket type fractals
Senaste publikationer
- A piecewise contractive dynamical system and Phragmèn's election method (2019)
- Phase transitions in long-range Ising models and an optimal condition for factors of g-measures (2019)
- The Kusuoka measure and the energy Laplacian on level-k Sierpinski gaskets (2019)
- Ergodic Theory of Kusuoka Measures (2017)
- Unique Bernoulli g-measures (2012)
Alla publikationer
Artiklar
- A piecewise contractive dynamical system and Phragmèn's election method (2019)
- Phase transitions in long-range Ising models and an optimal condition for factors of g-measures (2019)
- The Kusuoka measure and the energy Laplacian on level-k Sierpinski gaskets (2019)
- Ergodic Theory of Kusuoka Measures (2017)
- Unique Bernoulli g-measures (2012)
- Multifractal analysis of non-uniformly hyperbolic systems (2010)
- Square Summability of Variations and Convergence of the Transfer Operator (2008)
- Countable state shifts and uniqueness of g-measures (2007)
- Approximation of invariant measures for random iterations (2006)
- Om matematiska begrepp (2005)
- Algorithms for approximation of invariant measures for IFS (2005)
- Square summability of variations of g-functions and uniqueness of g-measures (2003)
- On Carleman and Knopp's inequalities (2002)
- Level sets of harmonic functions on the Sierpinski gasket (2002)
- Phase transitions in long-range Ising models and an optimal condition for factors of g-measures
- The Kusuoka measure and the energy Laplacian on some level-k Sierpiński gaskets
- Properties of the energy Laplacian on Sierpinski gasket type fractals